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Kinetics of stochastically gated diffusion-limited reactions and geometry
of random walk trajectories

O. Bénichou, M. Moreau, and G. Oshanin*
Laboratoire de Physique The´orique des Liquides (CNRS-UMR 7600), Universite´ Pierre et Marie Curie,

4 place Jussieu, 75252 Paris Cedex 05, France
~Received 29 November 1999!

In this paper we study the kinetics of diffusion-limited, pseudo-first-orderA1B→B reactions in situations
in which the particles’ intrinsic reactivities are not constant but vary randomly in time. That is, we suppose that
the particles are bearing ‘‘gates’’ which fluctuate in time, randomly and independently of each other, between
two states—an active state, when the reaction may take place betweenA and B particles appearing in close
contact; and a blocked state, when the reaction is completely inhibited. We focus here on two customary
limiting cases of pseudo-first-order reactions—the so-called target annihilation and the Rosenstock trapping
model—and consider four different particular models, such that theA particle can be either mobile or immobile
or gated or ungated, and ungated or gatedB particles can be fixed at random positions or move randomly. All
models are formulated on ad-dimensional regular lattice, and we suppose that the mobile species perform
independent, homogeneous, discrete-time lattice random walks. The model involving a single, immobile,
ungated targetA and a concentration of mobile, gatedB particles is solved exactly. For the remaining three
models we determine exactly, in the form of rigorous lower and upper bounds showing the sameN depen-
dence, the large-N asymptotical behavior of the probability that theA particle survives until theNth step. We
also realize that for all four models studied here theA particle survival probability can be interpreted as the
moment generating function of some functionals of random walk trajectories, such as, e.g., the number of
self-intersections, the number of sites visited exactly a given number of times, the ‘‘residence time’’ on a
random array of lattice sites, etc. Our results thus apply to the asymptotic behavior of corresponding generating
functions which are not known as yet.

PACS number~s!: 05.40.2a, 05.60.2k, 02.50.Ey, 82.20.2w
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I. INTRODUCTION

Many naturally occurring chemical reactions, or reactio
used in various technological and material processing op
tions, involve molecules with a rather complex internal stru
ture. For such reactions the geometrical complexity of
molecules appears to be a significant rate-controlling fac
in addition to the transport limitations and constraints i
posed by the elementary reaction act; that is, the chemic
active groups of complex molecules involved may be eff
tively screened by their inactive parts, which thus imped
the access of the reactive species and inhibits the reac
For instance, geometrical restrictions are crucial for liga
binding to proteins, such as, e.g., myoglobin or hemoglo
@1#. Here, in the static x-ray structure of myoglobin there
no hole for the ligand to enter, and it is believed that bind
of the ligand occurs when the side chains blocking the
trance swing out in the course of their thermal motion~Figs.
1 and 2!. Similarly, intercalation of drugs by DNA may b
controlled by breathing motions that involve the unstack
of adjacent pairs of bases. In some cases, the ligands th
selves can possess a complicated internal structure~as exem-
plified, for instance, by peptides!, such that their reactivity
may be influenced significantly by conformational chang
Last but not least, geometrical restrictions do manifest the
selves in such contexts, as, e.g., certain chemical reac

*Author to whom correspondence should be addressed.
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occurring within biomembranes@2#, incoherent exciton trap-
ping by substitutional traps on aromatic vinyl polymers@3#,
molecular transport inside proteins@4–7#, and in some medi-
cal therapies@8#. Clearly, an understanding of the impact
the geometrical limitations on the reaction kinetics cons
tutes an important challenge for the theoretical analysis.

A physically plausible approach to account for the infl
ence of the geometrical restrictions on the reactivity of co
plex molecules is to assume that the reaction in question,
a generic pseudo-first-order reaction of the form

A1B→B, ~1!

is modulated by the side reactions of the formA↔A* or
B↔B* , whereA ~B! stands for an active state, andA* (B* )
for an inactive, blocked state, in which case the reaction
Eq. ~1! is complete inhibited. In other words, one says th
one or both species involved in the reaction are gated,
gates changing their states in time according to some
scribed rules.

The kinetics of gated diffusion-limited reactions has be
studied analytically for nearly two decades. Following t
seminal work of McCammon and Northrup@9#, who ana-
lyzed a simple case of a two-state gating described by
arbitrary deterministic function of time, several importa
advancements have been made. In particular, a clas
Smoluchowski approach@10# was generalized in Refs.@11–
13# to describe the kinetics ofstochasticallygated ~SG!
pseudo-first-order reactions in Eq.~1! for both cases when
the gate is imposed on the trapsB or on theA particles. It has
3388 © 2000 The American Physical Society
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been realized that no symmetry exists between these
situations; as a matter of fact, the kinetic behavior appear
be rather different depending on which of the species p
cisely is being gated. Furthermore, Spougeet al. @14# studied
the SG reactions with more general mechanisms, includin
non-Markovian case, while Berezhkovski and co-work
discussed the impact of the many-particle effects on the
reactions kinetics@13,15,16#. However, the available theore
ical analysis is either based on uncontrollable assumpti
akin to the Smoluchowski-type approaches~see, e.g., Refs
@17,18#, and references therein!, or employs exact formal-
isms, which do not always allow for explicit calculation o
the corresponding decay patterns and become tractable
when some simplifying assumptions are made. Con
quently, except for a relatively simple model involving a
immobile ungated targetA and a concentration of mobile SG
B particles~see, e.g., Refs.@11–14#!, temporal evolution of
the SG reactions remains incompletely understood. This

FIG. 1. A schematic illustration of the effective geometr
screening of an activeA particle by inactive parts of a comple
~polymer! molecule. In the situation depicted in this figure theA
particle, which is attached to a polymer, is completely inaccess
to the B species, and the reaction between them is inhibited
solely to the geometrical restrictions.

FIG. 2. In the situation depicted in this figure theB’s may
diffuse through the hole opened in the course of the polym
thermal motion, and hence, may enter into a reaction with
chemically activeA particle.
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of course, not at all surprising, since diffusion-limited rea
tions with stochastic reactivity clearly pose more comp
technical problems to the theoretical analysis than their
gated counterparts, which themselves are not solvable
actly and often exhibit spectacular, essentially many-part
behavior.

In this paper we study in detail the kinetics of the S
pseudo-first-order reactions in Eq.~1!, involving a singleA
particle and a concentration ofB particles. We focus here on
two limiting cases—the so-called target annihilation@19–23#
and the Rosenstock trapping model@24#—and consider four
different models such that anA particle can be either mobile
or immobile, gated or ungated, and ungated or gatedB par-
ticles can be fixed at random positions or move random
~Fig. 3!. For computational convenience, all models are f
mulated on ad-dimensional regular lattice, and we suppo
that mobile species perform independent, homogene
discrete-time lattice random walks. Further on, in regard
reactivity fluctuations, we restrict ourselves to the two-st
Poisson gating model of Ref.@14#, in which each gate is
supposed to be in either of two states, active on blocked,
to update its state at each tick of the clock. The updat
process is assumed to proceed completely at random, wit
memory in time and without correlations with the gates i
posed on the other particles.

For such a gating model we analyze the time evolution
the A particle survival probabilityPN , i.e., the probability
that a single mobile or immobile, gated or ungatedA particle
is not annihilated up to theNth time step by a concentratio
of immobile or mobile, ungated or gatedB particles. For a
model involving a single immobile, ungated targetA and a
concentration of SG mobileB particles, the complete tempo
ral evolution ofPN is calculated exactly. For the remainin
three models we determine exactly the form of the largeN
asymptotical decay ofPN by deriving rigorous lower and
upper bounds, which both show the sameN dependence bu
slightly differ in prefactors.

An interesting by-product of our analysis, which appea
in especially lucid fashion within the discrete-space desc

le
e

’s
e

FIG. 3. Pseudo-first-orderA1B→B reaction involving a single
mobile ~immobile! A particle and a concentration of fixed~mobile!
B particles taking place on a two-dimensional lattice. The gate m
be imposed on eitherA or B particles.
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tion, is that for any particular model theA particle survival
probability PN can be interpreted as a moment generat
function of certain functionals, which mirror the internal g
ometry of random walks trajectories—an issue which h
recently gained renewed attention in view of many import
applications@25–28#. As a matter of fact, it has been know
for a long time that for ungated trapping reactions tak
place on ad-dimensional lattice the survival probabilityPN
can be thought off as the moment generating function of
numberS($rN%) of distinct sites visited by a given trajector
$rN% of an N-step lattice random walk@24#; in addition, for
Brownian motion in ad-dimensional continuum,PN can be
interpreted as the generating function of the volume of
so-called Wiener sausage, i.e., the volume swept by a sp
cal particle during timet @30#. We realize that for the SG
pseudo-first-order reactions some other characteristic fu
tionals of random walk trajectories come into play, whi
probe some interesting aspects of the geometrical structu
a single or of a collection of lattice random walks. Depen
ing on the particular model,PN then appears as the genera
ing function of such characteristic functionals of rando
walk trajectories such as, e.g., the number of s
intersections, the number of sites visited exactly a giv
number of times, the ‘‘residence time’’ on a random array
lattice sites, and some others. Consequently, our results
apply to the asymptotical behavior of the corresponding g
erating functions, which is not yet known in many cases.

The paper is structured as follows. In Sec. II we disc
two customary limiting cases of the pseudo-first-order re
tions in Eq.~1!—the so-called target annihilation model an
the Rosenstock trapping model—and present a brief out
of different results concerning their kinetic behavior in t
ungated case. In Sec. III we consider a gated target prob
focusing on the survival probabilityPN of an immobile un-
gated target in the presence of randomly moving, stocha
cally gatedB particles. Here we derive an exact tempo
evolution of the probability that none of mobile particles h
the target within anN-step walk. In Sec. IV we study th
survival of an immobilegated target in the presence of
concentration of mobile particles. The corresponding s
vival probability is found here in the form of rigorous lowe
and upper bounds, which both display the sameN depen-
dence and thus determine the temporal evolution ofPN ex-
actly. Next, in Secs. V and VI, we consider two models
stochastically gated trapping reactions; in the first case th
are the immobile trapsB that are supposed to be stochas
cally gated, while the mobileA particle is always assumed t
be in a reactive state~ungated!; in the second case the mobi
A particle is assumed to bear a stochastic gate, while
immobile trapsB are considered as perfect, nonfluctuati
traps. For both cases theA particle survival probability is
determined exactly, in the form of rigorous lower and upp
bounds showing the sameN dependence. Finally, we con
clude in Sec. VII with a brief summary of our results.

II. A REMINDER ON THE KINETICS OF UNGATED
PSEUDO-FIRST-ORDER REACTIONS: TARGET

ANNIHILATION AND THE ROSENSTOCK TRAPPING
MODELS

To fix the ideas, we first present a brief summary of
sults concerning the kinetics of ungated, diffusion-limit
g
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pseudo-first-order reactions in Eq.~1! taking place on
d-dimensional regular lattices. We will focus here and in t
remainder of the paper on two particular cases—the so-ca
target annihilation model, involving a single, immobileA
particle and a concentration of randomly movingB particles;
and the Rosenstock trapping model involving a single mob
A particle performing lattice random walk in the presence
a concentration of immobile, randomly placedB particles:
the traps. In subsequent sections of our work we will stu
how the kinetics in these two models will be modified if on
imposes a stochastic gate on either of two species; co
quently, the results of this section will serve us in what fo
lows as an important point of reference.

A. Target annihilation

We start with the target annihilation model, which allow
for an exact solution@19–22#. Consider an immobileA par-
ticle, located at the lattice origin, andB particles, which are
initially all placed at random positions on ad-dimensional
regular lattice and after that are allowed to move by perfor
ing independent, homogeneous, discrete-time random wa
As soon as any of theB’s appears at the lattice origin, theA
particle is instantaneously annihilated. Thus, following t
terminology earlier introduced, theA particle will be called
the ‘‘target,’’ while theB particles will be referred to as th
‘‘scavengers’’@23#. The property whose temporal evolutio
we wish to study is the probabilityPN5exp@2cQN

(tar)# that
the target particle ‘‘survives’’ until timeN; here and hence
forth c will denote the number density of theB particles,
while QN

(tar) , in view of the pseudo-first-order of the reactio
in Eq. ~1!, can be interpreted as the integral effective react
rate.

Now we define the model more precisely. We first su
pose that the lattice is of a finite extent and containsM sites,
whereas the number of the scavengers is also fixed and e
to K. In what follows we will turn to the limitM ,K→`,
while keeping the ratioK/M fixed: K/M5c.

Further on, letSn
(k) denote the position at which thekth

scavenger appears on thenth step (n50,1, . . . ,N) for a
given realization of its trajectory. Then, we construct a fun
tion CN of the form

CN5 lim
b→`

expF2b (
n50

N

(
k51

K

I~Sn
(k)!G

5 )
n50

N

)
k51

K

lim
b→`

exp@2bI~Sn
(k)!#, ~2!

whereI(Sn
(k)) is the indicator function,

I~X!5H 1, X50

0, XÞ0,
~3!

which shows whether thekth scavenger is at the lattice or
gin 0 at thenth step, or elsewhere.

Note that the functionCN serves as the indicator of th
reaction event; it is equal to 1 if within anN-step walk none
of the K scavengers has visited the origin~i.e., the target!,
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and becomes 0 when within the ‘‘time’’ interval@0,N# at
least one of the scavengers has visited the origin at l
once.

The property one is generally interested in computing
not, however, the realization-dependent functionCN , but
rather its averaged valuePN5^CN&, the average being take
over different realizations of scavengers’ random walks a
their initial positions. Below we will briefly outline an exac
computation of̂ CN& ~see also Refs.@19–23#!.

Noticing first that allSn
(k)’s with different values ofk are

independent of each other, we have that the target surv
probability can be written in the factorized form

PN5S limb→`

1

M (
S0

ES0H expF2b (
n50

N

I~Sn!G J D K

, ~4!

where the summation extends over all sites of
d-dimensional lattice, while the symbolES0

$•••% denotes the
expectation on the set of different random walk trajector
starting at the siteS0. Note next that

ES0H limb→`expF2b (
n50

N

I~Sn!G J
[Prob~SnÞ0 for any nP@0,N#uS0!, ~5!

i.e., is equal to the probability that a random walker start
at the siteS0 does not visit the origin within firstN steps.
Turning now to the infinite-space limit, i.e., lettingK,M
→` while keeping their ratio fixed,K/M5c, we then find
that Eq.~4! attains the form

PN5 limK,M→`uK/M5cS 12
1

M (
S0

3@12Prob~SnÞ0 for any nP@0,N#uS0!# D K

5expF2c(
S0

ProbN~0uS0!G , ~6!

where ProbN(0uS0) stands for the probability that a first pa
sage from the siteS0 to the origin did actually occur within
the firstN steps.

The probability ProbN(0uS0) is known exactly~see, e.g.,
Ref. @25#!; being summed over all possible starting points
defines another important characteristic property of rand
walks—the expectation of the numberS($SN%) of distinct
sites visited by a given trajectory$SN% of an N-step walk
starting at the origin, i.e.,

(
S0

ProbN~0uS0!5E0ˆS~$SN%!‰. ~7!

The expected number of distinct sites visited by anN-step
walk shows different asymptotical behavior depending
the dimensionalityd and on the type of the lattice@25#. In
particular, ford-dimensional Polya random walks, one ha
st

s

d
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a

s

g

t
m

n

E0ˆS~$SN%!‰5S 8N

p D 1/2

1OS 1

AN
D , d51,

E0ˆS~$SN%!‰5
pC2N

ln~N!
1OS N

ln2~N!
D , d52, ~8!

E0ˆS~$SN%!‰5
N

P~0u0;12!
1O~AN!, d53,

where C254/3A3, 1, and 2/A3 for hexagonal, square an
triangular two-dimensional lattices, respectively. The co
stant P(0u0;12) determines the probabilityR of eventual
return to the origin,P(0u0;12)5(12R)21, and is defined
as the limit j→12 of the generating functionP(0u0;j)
5(N50

` PN(0u0)jN, PN(0u0) being the probability of find-
ing a random walker at the origin at theNth step,
provided that the walk has started at the origin. T

exact values of P(0u0;12) are 12G6( 1
3 )/(24/3p4),

A6G( 1
24 )G( 5

24 )G( 7
24 )G( 11

24 )/(284p3), G4( 1
4 )/(4p3), and

G6( 1
3 )/(214/3p4) for diamond, simple cubic, body-centere

cubic and face-centered-cubic lattices, respectively@25#.
Therefore, for the target annihilation model the decay l

can be computed exactly and the integral effective reac
rateQN

(tar) is simply equal to the expected number of distin
sites visited by anN-step walk@19–22#. Note also that the
decay form appears to be essentially dependent on the
mensionality of the embedding lattice; it is characterized
a stretched-exponential dependence for low-dimensional
tices, on which the Polya walks are recurrent@R
51,P(0u0;12)5`#, and shows a purely exponential beha
ior for lattices of spatial dimensiond.2, whereR,1 and
P(0u0;12) is well defined.

B. Rosenstock trapping model

We turn next to the so-called Rosenstock trapping pr
lem, in which one focuses on the fate of a singleA particle
performing a random walk over the lattice in the presence
immobile, perfect, randomly placed trapsB. We start by as-
suming again that the lattice is finite and containsM sites.
The K traps B are placed completely at random and th
positions are determined by the lattice vectorsS(k),k
51,2, . . . ,K. Denoting the lattice position of theA particle
at thenth step asrn , we can now write down the indicato
function of the reaction event as

CN5 limb→`expF2b (
n50

N

(
k51

K

I~rn2S(k)!G , ~9!

whereI(X) is the indicator function defined in Eq.~3!. The
function in Eq.~9! is equal to one for suchN-step trajectories
which avoid passing through any of the sitesS(k) and turns to
zero for those trajectories which visit at least once at le
one of these sites.

Now, we pass to averaging the function in Eq.~9! over
the traps’ placement. Since allS(k)’s are mutually indepen-
dent, one can write down such an the average in the fac
ized form
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^CN&5E0H )
k51

K S 1

M (
S(k)

limb→`

3expF2b (
n50

N

I~rn2S(k)!G D J ~10!

Next, in the limitK,M→`, one has that

^CN&5E0H S 1

M (
S

limb→`expF2b (
n50

N

I~rn2S!G D KJ
5E0HexpX2c(

S
F12 limb→`

3expS 2b (
n50

N

I~rn2S!D GCJ
5E0HexpX2c(

S
F12IS (

n50

N

I~rn2S!D GCJ , ~11!

where

(
S

F12IS (
n50

N

I~rn2S!D G[S~$rN%! ~12!

is the number of distinct sites visited by a given trajecto
$rN%. Consequently, theA particle survival probability obeys

^CN&5E0ˆexp@2cS~$rN%!#‰5exp@2cQN
(tr )#, ~13!

and hence, appears here as the moment generating fun
of the number of distinct sites visited by anN-step random
walk.

Therefore, the major difference between the target an
hilation model and the trapping model is exactly that in t
former the survival probability is the exponential of the e
pected number of distinct sites, while in the latter case
involves a fairly more complex property—its moment ge
erating function. As a consequence, the trapping prob
turns out to be essentially more difficult than the target o
and hence, shows a richer behavior.

To display the time evolution ofPN in the trapping prob-
lem, we will first outline the predictions of a certain heuris
approach—the so-called Rosenstock approximation@24#—
and then write down the results of a rigorous analysis
Donsker and Varadhan, which concerns the large-N asymp-
totical behavior@30#.

1. Rosenstock approximation

This approximation was first applied by Rosenstock@24#
in his studies of luminescence quenching kinetics a
amounts, in essence, to the mere replacement of the ave
of an exponential of the number of sites visited by an ex
nential of the expected number,

^CN&'exp@2cE0ˆS~$rN%!‰#. ~14!

As one may readily notice, this heuristic procedure yie
exactly the behavior found for the target annihilation pro
ion

i-

it
-
m
e
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ge
-

s
-

lem, and, consequently, within the framework of this a
proximation one finds thatQN

(tr )[QN
(tar) .

As a matter of fact, numerical simulations demonstr
that a rather crude and uncontrollable approximation in
~14! provides quite a fair description of the decay for t
trapping problem for intermediate values ofN @20#, until at
very largeN some deviations emerge. The reason why
Rosenstock approximation works at intermediateN can be
apparently explained as follows: As a matter of fact, t
Rosenstock approximation represents a rigorous lower bo
on PN , since replacement of the average of an exponentia
the number of distinct sites visited by an exponential of
expected number is tantamount to the application of
Jensen inequality,̂exp@2cQN#&>exp@2c^QN&#. On the other
hand, this inequality can be rewritten as

^CN&5^exp@ ln~CN!#&>exp@^ ln~CN!&#, ~15!

which signifies that in such an approach the average of
idicator function is approximated by the exponential of t
averaged logarithm of this function. Since the logarithm i
slowly varying function, it is generally believed that its a
erage value is supported by typical realizations of rand
walk trajectories which are representative at moderate va
of N.

2. Fluctuation-induced large-N tails of the survival probability

In the large-N limit, however, the kinetics of the trappin
reactions proceeds somewhat slower than that predicte
Eq. ~14!. This happens due to some fluctuation effects, wh
a mean-field-type approximation in Eq.~14! cannot capture.
It has been first predicted in Ref.@29#, and subsequently
proven by Donsker and Varadhan@30#, that for arbitraryd
the decay follows

PN;exp@2adc2/(d12)Nd/(d12)#, N→`, ~16!

wheread is a constant, dependent on the lattice dimensi
ality @30#.

The physical origin of such an anomalous decay law c
be illustrated by the following heuristic derivation. Consid
first the function in Eq.~13!, and suppose that for some give
realization of theN-stepA particle trajectory$rN% the maxi-
mal excursion from the origin is equal toRmax. Conse-
quently, for this realization the numberS($rN%) of distinct
sites visited by this realization of random walk trajectory c
be majorized asS($rN%)<Rmax

d , and the overall decay func
tion can be bounded from below by

PN>E ddRmaxexp@2cRmax
d #Prob~max$rN%5Rmax!,

~17!

where Prob(max$rN%5Rmax) is the probability that for a
d-dimensional,N-step random walk the maximal displac
ment from the starting point is exactly equal toRmax. For
sufficiently largeN, the leading behavior of this probabilit
follows ;exp@2gdN/Rmax

2 #, where gd is a dimension-
dependent constant. Substituting the latter form to Eq.~17!
and noticing that the integrand is a bell-shaped function,
thus perform the integration in terms of the saddle-po
method. In doing so one finds that the value ofRmax which
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provides the maximum to the integrand is given byRmax*
5(2gdN/cd)1/(d12). Consequently, the overall decay fun
tion obeys

PN>exp@2const3c2/(d12)Nd/(d12)#, ~18!

which bound displays exactly the sameN dependence as th
result in Eq.~16!.

Another illustrative derivation can be performed starti
directly from the definition of the indicator function of th
reaction eventCN in Eq. ~9!. To do this, suppose first tha
for a given realization of traps’ placement the nearest to
origin trap B appears at a certain distanceL. For such a
realization, evidently,CN51 for those trajectories$rN%
which do not leave withinN first steps the volumeLd. Con-
sequently, here the overall decay function can be boun
from below by

PN>maxL$exp@2cLd#

3Prob~ urnu<L for any nP@0,N#u0!%, ~19!

where the first multiplier gives the probability of having
trap-free void of volumeLd, while the second one stands fo
the probability that a random walk starting at the origin do
not leave this volume within firstN steps. ForN sufficiently
large, the latter probability follows exp@2gdN/L2#, and
hence, maximizing the right-hand side of Eq.~19! with re-
spect toL, i.e., searching for the maximal lower bound, o
ends up with the dependence of essentially the same for
that given by Eq.~18!. Consequently, these bounds demo
strate that the long-time behavior of the survival probabi
in Eq. ~16! is supported, first, by the presence of sufficien
large trap-free voids of typical size;N1/(d12), and second,
by realizations of random walks constrained not to lea
these voids within timeN, i.e., atypical, spatially confined
realizations for whichurNu grows in proportion toN1/(d12)

only.
To conclude this section, we emphasize that the long-t

behaviors of the trapping and target annihilation proble
are different. Whereas the integral effective rate constant
the target annihilation follows the behavior of the expec
number of distinct sites visited, the trapping decay conta
all the higher moments of this characteristic property a
tends at very long times toward the asymptotic form in E
~16!, i.e.,QN

(tr );(N/c)d/(d12) asN→`. Thus the decay pat
terns differ, depending on which of the two species in Eq.~1!
is the mobile one. One consequently has a counterexamp
the view that in reaction kinetics only the relative motion
the species, but not the individual movements, is importa
In what follows we intend to analyze how the reaction kin
ics will differ depending on which of the species precisely
being gated.

III. MODEL I: AN IMMOBILE TARGET A AND
RANDOMLY MOVING STOCHASTICALLY GATED

SCAVENGERS B

We start our analysis of stochastically gated pseudo-fi
order reactions considering first survival of an immobile t
get in the presence of a concentration of mobile gated s
engersB—the model which again admits an exact solutio
e

ed

s

as
-

e

e
s
or
d
s
d
.

to

t.
-

t-
-
v-
.

We suppose here that each gate can be in either of two st
one active and the other blocked. In the active state thB
particles are reactive, whereas the blocked or inactive s
inhibits the reaction. The gate on anyB particle is supposed
to update its state at each moment of time, at random,
independently of the gates imposed on the other partic
The A particle is ‘‘annihilated’’ at the very moment whe
any of theB particles visits it for the first time in the reactiv
state. Conversely, if any of theB’s visits theA particle in the
blocked state, both particles can harmlessly coexist with e
other.

More precisely, we specify the reactive ability of thekth
scavenger (k51, . . . ,K) at thenth step,n50,1, . . . ,N, by
assigning to each of theB particles a random variablehn

(k) .
This random variable may assume two values: 0, with pr
ability p, in which case the scavenger is neutral with resp
to the reaction; and 1, with probability 12p, which corre-
sponds to the reactive state. In all the models to be stud
here, we will suppose that the reactivities of gated partic
follow independent Poisson processes@14#, such that allhn

(k)

are independent, randomly distributed variablesd correlated
with respect ton and k. The average with respect to th
distribution ofhn

(k) will be denoted by the overbar.
Further on, denoting asSn

(k) the position at which thekth
scavenger appears at thenth step for a given realization of its
N-step trajectory$SN

(k)%, we construct the reaction event in
dicator functionCN , which now takes the form

CN5 lim
b→`

expF2b (
n50

N

(
k51

K

I~Sn
(k)!hn

(k)G
5 )

n50

N

)
k51

K

lim
b→`

exp@2bI~Sn
(k)!hn

(k)#, ~20!

where I(X) is the indicator function showing whether th
kth scavenger is at the lattice origin at thenth step, or else-
where@Eq. ~3!#.

The indicator functionCN is equal to 1 if within the
N-step random walk none of theK scavengers has visited th
origin in the reactive state, and turns to zero otherwise; i.e
the case when, within the interval@0,N#, at least one of the
scavengers has once visited the origin in the reactive s
Its average over the reactivity fluctuations, i.e., the state
the gateshn

(k) , can be performed very directly, since for th
Poisson gating model under study all terms in the dou
product in Eq. ~20! are statistically independent of eac
other. Consequently, we have that

C̄N5 )
n50

N

)
k51

K

lim
b→`

exp@2bI~Sn
(k)!hn

(k)#

5 )
n50

N

)
k51

K

$~12p! lim
b→`

exp@2bI~Sn
(k)!#1p%. ~21!

Further on, noticing that

lim
b→`

exp@2bI~Sn
(k)!#512I~Sn

(k)!, ~22!
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and, hence, that

~12p! lim
b→`

exp@2bI~Sn
(k)!#1p5exp@2apI~Sn

(k)!#,

ap52 ln~p!, ~23!

we find that the indicator function of the reaction eventCN ,
averaged over the reactivity fluctuations, takes the form

C̄N5exp@2apN~$SN
(k)%!#, ~24!

where

N~$SN
(k)%!5 (

n50

N

(
k51

K

I~Sn
(k)!. ~25!

Note now that the functionalN($SN
(k)%) determines the num

ber of times thatK given N-step random walk trajectorie
$SN

(k)%, with their starting points at fixed positionsS0
(k) , pass

through the origin. Note also that here all walks contribu
independently, which means that the simultaneous visit ok
walkers is countedk times, and hence,N($SN

(k)%) can be
interpreted as the ‘‘residence time’’ at the origin forK inde-
pendent random walkers.

As a matter of fact, the numberN($SN
(k)%) can be also

viewed from a different perspective, which turns to be rat
useful for illustration of the distinction between differe
models. In Fig. 4 we depict, for a one-dimensional case
given realization of several random walks trajectories
form of ‘‘directed polymers’’ in 111 dimensions, theY-axis
being the timen; in this languageN($SN

(k)%) appears as the
total number of times that ann axis is intersected on a seg
ment@0,N# by a brush ofK phantom directed polymers wit
their ends fixed on ad-dimensional substrate. The surviv
probabilityPN can then be thought of as the generating fu
tion of the moments of the number of visits rendered byK
independent walkers to the origin during ‘‘time’’N, or of the
number of intersections of then axis on the segment@0,N#
by a brush of directed polymers. In the infinite space lim
PN is hence the generating function of moments of the nu

FIG. 4. Representation of theB particles’ trajectories in the form
of ‘‘directed polymers.’’ Numbers on then axis denote the tota
number of crossings of different points on this axis by differe
trajectories.
e

r

a

-

t
-

ber of visits to the origin by random walkers which are in
tially uniformly distributed with a given number densityc on
an infinited-dimensional lattice.

We next pass to averaging over the scavengers’ traje
ries. Noticing that all multipliers in Eq.~25! with the same
index k are again statistically independent of the multiplie
with a differentk, we may write this average as

PN5^C̄N&5K )
k51

K

expF2ap(
n50

N

I~Sn
(k)!G L

5)
k51

K K expF2ap(
n50

N

I~Sn
(k)!G L

5S 1

M (
S0

ES0H expF2ap(
n50

N

I~Sn!G J D K

.

~26!

Turning to the infinite space limit, we find from Eq.~26! that
the survival probabilityPN follows

PN5X12
1

M (
S0

S 12ES0H expF2ap(
n50

N

I~Sn!G J D CK

5expF2c(
S0

ES0
ˆM$0%~$SN%!‰G , ~27!

whereM$0%($SN%) is a functional of a givenN-step random
walk trajectory, which is defined by

M$0%~$SN%!5F12expS 2ap(
n50

N

I~Sn!D G . ~28!

One notices now thatM$0%($SN%) again counts a number o
visits to the origin by a givenN-step random walk trajectory
with its starting point being fixed atS0. That is,
M$0%($SN%)50 for such N-step trajectories, which neve
pass through the origin, equals 12p for such trajectories
which visit the origin only once, and 12pj for those trajec-
tories which do it exactlyj times. Consequently, the expecte
value of the functionalM$0%($SN%), which enters the expo
nential in Eq.~27!, can be written down as the following
polynomial in powers of the gating probabilityp:

ES0
ˆM$0%~$SN%!‰5(

j 50

N

bN
( j )~0uS0!~12pj 1dS0,0!, ~29!

wheredS0,0 is the Kroneckerd and bN
( j )(0uS0) is the prob-

ability that a simple random walk starting from the siteS0
visits the origin in the firstN steps exactlyj times @25#. We
adhere here to the definition forbN

( j )(0uS0) presented in Ref.
@25#, and adopt the convention that the initial momentn
50 is regarded as the zeroth visit to the siteS0.

We turn next to the analysis of theN-dependence of the
integral effective reaction rate for the model I,QN

(I ) . It fol-
lows from Eq.~29! that QN

(I ) is defined as the polynomial o
the form

t



g

a

a
n

on

om
in
r

ber

e
ch

he

ve

t

an
nd

actly

PRE 61 3395KINETICS OF STOCHASTICALLY GATED DIFFUSION- . . .
QN
(I )5(

S0
(
j 50

N

bN
( j )~0uS0!~12pj 1dS0,0!. ~30!

To computeQN
(I ) for any N, we introduce the generatin

function

Q(I )~j![ (
N50

`

QN
(I )jN

5~12p! (
N50

`

bN
(0)~0u0!jN

1(
j 51

`

~12pj 11! (
N51

`

bN
( j )~0u0!jN

1 (
S0 ,S0Þ0

(
j 51

`

~12pj ! (
N51

`

bN
( j )~0uS0!jN,

~31!

where we have made use of an evident fact that
bN

( j )(0uS0) vanish for j .N.
Now, to evaluate the generating functionQ(I )(j) explic-

itly, we calculate three different sums entering Eq.~31!. First
of all, we find that

~12p! (
N50

`

bN
(0)~0u0!jN

5~12p!H 11 (
N51

` S 12 (
n51

N

Fn~0u0!D jNJ
5~12p!H 11

j

12j
2 (

n51

`

Fn~0u0! (
N5n

`

jNJ
5

12p

12j
„12F~0u0;j!…, ~32!

whereF(0u0;j) is the generating function ofFn(0u0)—the
average probability that a random walk trajectory starting
the origin returns to the origin for the first time exactly o
the nth step@25#. Further on, we have

(
j 51

`

~12pj 11! (
N51

`

bN
( j )~0u0!jN

5
1

12j
„12F~0u0;j!…(

j 51

`

~12pj 11!F~0u0;j! j

5
12p

12j

F~0u0;j!†11p„12F~0u0;j!…]

12pF~0u0;j!
, ~33!

and, eventually,
ll

t

(
S0Þ0

(
j 51

`

~12pj ! (
N51

`

bN
( j )~0uS0!jN

5
12F~0u0;j!

12j F (
j 51

`

~12pj !F~0u0;j! j 21G
3F (

S0Þ0
F~0uS0 ;j!G

5
12F~0u0;j!

12j

12p

„12F~0u0;j!…„12pF~0u0;j!…

3„12F~0u0;j!…F 1

12j
2P~0u0;j!G

5
12p

12j

12F~0u0;j!

12pF~0u0;j! F 1

12j
2P~0u0;j!G , ~34!

whereP(0u0;j), as usual, stands for the generating functi
of the probabilityPN(0u0) of having a walker at the origin
on theNth step, provided that the walker started his rand
walk at the origin. Consequently, summing up the results
Eqs.~32!–~34!, we obtain the following exact expression fo
the generating function:

Q(I )~j!5
~12p!

~12j!2

12F~0u0;j!

12pF~0u0;j!

5
1

~12j!2

~12p!

p1~12p!P~0u0;j!

5S~j!F11
p

~12p!P~0u0;j!G
21

, ~35!

S(j) being the generating function of the expected num
of distinct sites visited by anN-step random walk@25#,
S(j)5(N50

` E0ˆS($SN%)‰jN. In principle, the integral effec-
tive reaction rate for model I valid for anyN can be obtained
now by inverting the result in Eq.~35!, which will require,
however, computation of very complex integrals.

We now turn to an analysis of the large-N behavior of the
reaction rateQN

(I ) . However, before doing this, it may b
expedient to make first the following observation, whi
might seem to be quite surprising at the first glance:

The result in Eq.~35! reveals that forrecurrent random
walks the leading large-N behavior of the integral reaction
rateQN

(I ) should beindependentof the gating probability.
It happens actually because for recurrent walksP(0u0;j)
→1` asj→12 (N→`), and hence, the expression on t
right-hand side of Eq.~35! appears to be independent ofp. In
virtue of the Tauberian theorem, it implies that the effecti
integral reaction rateQN

(I ) is independent ofp whenN→`.
Moreover, the result in Eq.~35! shows that for recurren
walks the leading atN→` behavior ofQN

(I ) is defined ex-
actly by the expected number of distinct sites visited by
N-step random walk. Consequently, for recurrent walks a
N→` the target survival probabilityPN is not influenced by
fluctuating gates imposed on the scavengers, and has ex
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the same form for reactions which are subject to stocha
gating or reactions in which the scavengers are always in
reactive state@20–22#.

On the other hand, such a behavior is not counterintui
and agrees with our previous knowledge of the diffusio
limited reactions kinetics. The point is that imposing a flu
tuating gate on otherwise perfect scavengers is in a way s
lar to imposing the constraint that annihilation of the targ
by a scavenger may happen with some finite probability
at a finite rate prescribed by certain elementary reaction
constantKel (Kel,`). Following the seminal mean-field
analysis of Collins and Kimball@31# ~see also Refs.@18# and
@33# for more details!, the overall reaction constant takin
into account both the constraints imposed by the elemen
reaction act~finite Kel) and the transport limitations~in order
to react, particles have first to find each other in the cours
their random motions! follows

~]QN /]N!215
1

Kel
1

1

KSmol
, ~36!

whereKSmol is the so-called Smoluchowski constant whi
equals the diffusive current through the surface of an imm
bile, perfectly adsorbing sphere. Now, it is well-known~see,
e.g., Ref.@18# for more discussion! that for low-dimensional
systems the Smoluchowski constant is not a real constan
rather a time-dependent coefficient which vanishes as t
evolves. This means that in low dimensions random trans
of particles offers progressively higher resistance with
spect to the overall reaction rate than the constraints impo
by the elementary reaction rate, which results ultimately i
kinetics which is totally controlled by random transport
particles toward each other and is independent ofKel . This
is precisely the effect which we observe in case of lo
dimensional stochastically gated target annihilation proble

We note also parenthetically that a similar effect was
cently predicted for low-dimensional catalytically activat
binary reactions, in which case the particles’ reactivity do
not fluctuate in time but is rather a random function of t
space variables@32#. It has been shown here that the lon
time kinetics is also insensitive to the concentration of
catalytic sites which promote reactions between rando
moving A particles and is independent ofKel . Of course, in
higher-dimensional space~such thatd is greater than the
fractal dimension of the random walk! the effective reaction
rate does depend on the density of catalytic sites andKel .
Similarly, for stochastically gated target annihilation rea
tions,P(0u0;12) is well defined ford.2, which implies, by
virtue of Eq. ~35!, that the leading atN→` terms in the
integral effective reaction rate should depend on the ga
probability p.

We focus next on the special case of Polya random wa
and proceed to determine the long-time behavior of the
action rate in Eq.~35! explicitly, first for one- and two-
dimensional lattices, in which case the Polya walks are
current, and then ford-dimensional lattices withd.2, for
which the walks are nonrecurrent.

A. Polya walks on one-dimensional lattices

For Polya random walks on one-dimensional lattices
generating function of the first-visit probability is known e
ic
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actly and has a particularly simple form~see, e.g., Ref.@25#!,
F(0u0;j)512A12j2. Consequently, in this case the ge
erating functionQ(I )(j) of the integral effective reaction rat
obeys

Q(I )~j!5
~2j21!~12p!

~12j!3/2

A11j

12p1pA12j2
. ~37!

In the asymptotical limitj→12 ~or equivalently, whenN
→`) we find then from Eq.~37! that

Q(I )~j!5
A2

~12j!3/2
22

p

~12p!~12j!
1O~1/A~12j!!.

~38!

Hence, by virtue of a Tauberian theorem, we have that, in
limit N→`, the effective reaction rate follows

QN
(I )5S 8N

p D 1/2

22
p

12p
1OS 1

AN
D , ~39!

i.e., as we have already remarked, the leading behavio
N→` in case of the target annihilation problem with st
chastic gates imposed on the scavengers is exactly the s
as in the case of its ungated counterpart@Eq. ~8!#. The first
correction term, however, does depend on the gating p
ability p and diverges whenp→1, i.e., in the limit when
scavengers are being completely inert with respect to
reaction. A simple comparison of the first two terms in E
~39! shows that the universal,p-independent behavior is es
tablished whenN exceeds a certain crossover valueN* , such
that N* 'pp2/2(12p)2. Note also that a similar behavio
has been predicted earlier in Ref.@13# within the framework
of a continuous-space description.

B. Polya walks on two-dimensional lattices

The generating functionP(0,0uj) is not known explicitly
for Polya walks on two-dimensional lattices. However,
asymptotical behavior asj→12 ~or, equivalently, whenN
→`) is well documented~see, e.g., Ref.@25#!, and is given
by

P~0u0;j!5
1

pC2
lnS K

12j D @11O~12j!#, ~40!

where the constantC2 has been defined in the text after E
~8!, while the constantK equals 4, 8, and 12 for hexagona
square, and triangular lattices, respectively.

From the latter equation we find then that the lead
asymptotical behavior ofQ(I )(j) asj→12 follows

Q(I )~j!52
pC2

~12j!2ln~12j!
2p2S p1

~12p!ln~K !

pC2
D

3
C2

2

~12p!~12j!2ln2~12j!

1OS 1

ln3~12j!~12j!2D . ~41!
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Hence, by applying the Tauberian theorem we find that
two-dimensional target annihilation with stochastically-ga
scavengers the integral effective reaction rate obeys

QN
(I )5pC2

N

ln~N!
1pC2@12g2 ln~K !2pp/C2~12p!#

3
N

ln2~N!
1OS N

ln3~N!
D , ~42!

whereg denotes the Euler constant. Note that again, in
cord with our earlier prediction, the leading large-N behavior
appears to be independent of the gating probability and
ceeds exactly in the same way as for the ungated target p
lem. This long-time regime can be observed, however
considerably longer times than that for the one-dimensio
systems; on comparing the first two terms on the right-h
side of Eq.~42! we infer that the corresponding crossov
time N* is given by

N* 'expFpC2p

12p G , ~43!

i.e., is exponentially large when p→1, while in one-
dimensional systems this dependence is only algebraic.

C. Polya walks ond-dimesional lattices,dÌ2

Finally, we turn to the case of recurrent Polya walk
which case is realized, namely, for lattices with spatial
mensiond.2. Here the probabilityR of eventual return to
the origin is finite, and consequently, we find from Eq.~35!
that

Q(I )~j!5
12p

~12p!P~0u0;12!1p

1

~12j!2
1OS 1

~12j!3/2D ,

~44!

which yields, in the large-N limit, the result

QN
(I )5

12p

~12p!P~0u0;12!1p
N1O~AN! ~45!

Hence, for lattices withd.2, the decay of the survival prob
ability is purely exponential in all dimensions. Note also th
the exact result in Eq.~45! confirms in a way the mean-fiel
result by Collins and Kimball@Eq. ~36!#; as a matter of fact,
it appears that Eq.~45! can be cast exactly into the form o
Eq. ~36! if we set Kel5(12p)/p and Ksmol
51/P(0u0;12). Note also that our Eq.~45! confirms the
conclusion of Szaboet al. @11# concerning the possibility o
the calculation of the steady-state stochastically gated
constant in terms of an appropriately defined ungated mo

IV. MODEL II: AN IMMOBILE FLUCTUATING TARGET
AND RANDOMLY MOVING UNGATED SCAVENGERS

We turn next to the survival of astochasticallygated,
immobile A particle—a target, in the presence of ungat
r
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d

scavengersB, which perform independent random walks o
a d-dimensional lattice. For this model the indicator functio
of the reaction event can be written down as

CN5 lim
b→`

expF2b (
n50

N

hn(
k51

K

I~Sn
(k)!G , ~46!

wherehn is the indicator variable of the gate imposed on t
target, whileSn

(k) defines the lattice positions of thekth scav-
enger at thenth step,n50,1, . . . ,N. We again suppose tha
the target reactivity assumes at random two values21 and 0
with probabilities 12p and p, respectively. In the statehn
51 the target is accessible for reaction and can be ann
lated by any of the scavengers arriving at the origin, while
the statehn50 reaction cannot take place.

Averaging firstCN in Eq. ~46! with respect to the fluc-
tuations of the reactivity, we obtain

C̄N5 )
n50

N

lim
b→`

expF2bhn(
k51

K

I~Sn
(k)!G

5 )
n50

N H ~12p! lim
b→`

expF2b(
k51

K

I~Sn
(k)!G1pJ .

~47!

Further on, noticing that

~12p! lim
b→`

expF2b(
k51

K

I~Sn
(k)!G1p

55 1, (
k51

K

I~Sn
(k)!50

p, (
k51

K

I~Sn
(k)!.0,

~48!

and hence, rewriting this expression as

~12p! lim
b→`

expF2b(
k51

K

I~Sn
(k)!G1p

5expH 2apF12IS (
k51

K

I~Sn
(k)!D G J , ~49!

we find that the indicator function of the reaction event, a
eraged over the fluctuations of the target reactivity, atta
the form

C̄N5exp@2apN* ~$SN
(k)%!#, ~50!

whereN* ($SN
(k)%) is given by

N* ~$SN
(k)%!5 (

n50

N F12I S (
k51

K

I~Sn
(k)!D G ~51!
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Note now that the functional„12I @(k51
K I(Sn

(k))#… measures
the occupancy of the origin at time momentn. It equals zero
if none of K walkers is present at the origin at the tim
momentn and equals 1 if one or several scavengers appe
the origin at thenth step. In this regard,N* ($SN

(k)%) is similar
to the earlier defined functionalN($SN

(k)%) appearing in the
analysis of model I. An important difference, however,
that a simultaneous visit of the origin by several walkers
counted as a single visit, and consequently,N* ($SN

(k)%) de-
scribescollectivebehavior of allK walkers, which cannot be
factorized, as it appears in model I. This substantial disti
tion between the models involving ungated and gated tar
was noticed already by Szaboet al. in Ref. @12# ~see, also
Ref. @13# for more details!, who stated that the crucial dif
ference between the case when the gates are imposed oB’s
or on theA particle is that in the latter case the ‘‘switching
theA from the reactive conformation to a nonreactive one
felt simulateneously by all scavengers.’’ This means, in p
ticular that, if we define the functionalN* ($SN

(k)%) using the
‘‘directed’’ polymer representation in Fig. 4, then it wou
count all sites on then axis visited simultaneously by two
three, etc., walkers as singly visited sites. In this rega
N* ($SN

(k)%) determines the number ofdistinct visits to the
origin by K independent walkers.

We notice next that an upper bound on the integral eff
tive reaction rateQN

(II ) for model II can be found very
straightforwardly. To do this, it suffices merely to obser
that

12IS (
k51

K

I~Sn
(k)!D<(

k51

K

I~Sn
(k)!, ~52!

and hence, thatN* ($SN
(k))<N($SN

(k)%). This implies, in turn,
that the survival probabilityPN for model II is greater than
the survival probability obtained for model I, and the integ
effective reaction rateQN

(II ) obeys

QN
(II )<QN

(I ) , ~53!

which inequality sets a rigorous upper bound onQN
(II ) . Note

that the inequality in Eq.~53! was established earlier usin
different type of arguments in Ref.@15#.

It may be worthy to remark that the inequality in Eq.~52!
holds as an equality when allSn

(k) are different at a givenn,
which happens when the scavengers do obey a hard-
exclusion and no two scavengers can simultaneously occ
the same lattice site. Given that the scavegers are indi
guishable, we may thus expect that for model II with ha
core scavengers, theA particle survival probability will be
determined exactly by Eqs.~39!–~45! at sufficiently large
times.

We next proceed to calculate the upper bound on the
vival probability for model II, which requires a slightly mor
complicated analysis. To do this, we return to the indica
function of the reaction event in Eq.~47! and perform a first
averaging with respect to the trajectories and the initial
sitions of the scavengers. The steps involved in the avera
procedure in this case are as follows:
at
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^CN&5K )
k51

K

lim
b→`

expH 2b (
n50

N

hnI~Sn
(k)!J L

5)
k51

K K lim
b→`

expH 2b (
n50

N

hnI~Sn
(k)!J L

5)
k51

K X 1

M (
S0

ES0H lim
b→`

expS 2b (
n50

N

hnI~Sn
(k)!D J C

5S 1

M (
S0

Prob$hnI~Sn!50

for any nP@0,N#uS0% D K

, ~54!

where Prob„hnI(Sn)50 for any nP@0,N#uS0… is the prob-
ability that anN-step random walk, starting atS0 and char-
acterized by internal two-state variablehn , has never visited
the origin being in the reactive statehn51. Next, turning to
the infinite-space limit, we find

^CN&5S 12
1

M (
S0

$12Prob@hnI~Sn!50

for any nP@0, N#uS0#% D K

5expF2c(
S0

$12Prob@hnI~Sn!50

for any nP@0, N#uS0#%G . ~55!

Evidently,

12Prob@hnI~Sn!50 for any nP@0, N#uS0#

5ProbS (
n50

N

hnI~Sn!>1US0D , ~56!

where Prob@(n50
N hnI(Sn)>1uS0# is the probability that an

N-step random walk starting at siteS0 has at least once vis
ited the origin being in the reactive state.

Note that Prob@(n50
N hnI(Sn)>1uS0# is not constrained in

the sense that it provides no information at which of t
visits to the origin precisely the reactive state has appea
that is, the particle could visit the origin many times until
arrived eventually at the reactive state. Keeping this in mi
we now realize how the sum in the exponent in the last l
of Eq. ~55! can be bounded from below, which will result i
the desired upper bound on the target survival probability
model II. To do this, we will proceed as follows: Suppo
first that the starting point of the trajectory$SN% is not the
origin. Then we notice that, forS0Þ0, one has
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ProbS (
n50

N

hnI~Sn!>1US0D
> (

n50

N

ProbS hnI~Sn!

51 and (
l 50

n21

h lI~Sl !50US0D ,

~57!

where Prob@hnI(Sn)51 and ( l 50
n21h lI(Sl)50uS0# stands

for the probability that the origin has been visited for the fi
time exactly at thenth step~has not been visited prior to th
nth step!, and the particle at this very step was in the react
state, i.e., such thathn51. Hence the right-hand side of Eq
~57! is the constrained probability that within anN-step walk
starting at the siteS0Þ0 the particle happened to be in th
reactive state at its first visit to the origin. Summing ne
both sides of the inequality in Eq.~57! over all starting
points, we obtain

(
S0

ProbS (
n50

N

hnI~Sn!>1US0D
> (

S0 ,S0Þ0
ProbS (

n50

N

hnI~Sn!>1US0D
> (

S0 ,S0Þ0
(
n50

N

3ProbS hnI~Sn!51 and (
l 50

n21

h lI~Sl !50US0D
5 (

S0 ,S0Þ0
(
n50

N

hnFn~0uS0!5 (
n50

N

hn (
S0 ,S0Þ0

Fn~0uS0!

5 (
n50

N

hn(
S0

Fn~S0u0!5 (
n50

N

hnE0$D~$Sn%!%, ~58!

whereD($Sn%) is an auxiliary random variable, defined to b
the number ofv irgin sites visited on thenth step by a given
particle trajectory$Sn% @25#,

D~$Sn%!5S~$Sn%!2S~$Sn21%!. ~59!

Consequently, we can bound the right-hand side of Eq.~55!
as

PN<expF2c(
n50

N

hnE0ˆD~$Sn%!‰G
5 )

n50

N

exp@2chnE0ˆD~$Sn%!‰#

5 )
n50

N

ˆ~12p!exp@2cE0ˆD~$Sn%!‰#1p‰. ~60!
t

e

t

Further on, following the Dvoretzky-Erdo¨s Lemma,
E0ˆD($Sn%)‰ is a monotonic decreasing sequence of timen
~see, e.g., Ref.@25#!, i.e.,

1>E0ˆD~$S1%!‰>E0ˆD~$S2%!‰>•••>E0ˆD~$Sn%!‰>•••

>E0ˆD~$SN%!‰, ~61!

such that

lim n→`E0ˆD~$Sn%!‰5
1

P~0u0;12!
; ~62!

we can majorize the terms in the curly brackets on the rig
hand side of Eq.~60! by replacingE0ˆD($Sn%)‰ by its mini-
mal valueE0ˆD($SN%)‰. Enhancing in such a way the boun
in Eq. ~60!, we have that

PN< )
n50

N

†~12p!exp@2cE0ˆD~$SN%!‰#1p‡

5†~12p!exp@2cE0ˆD~$SN%!‰#1p‡N11

5exp̂ 2~N11!ln†1/„~12p!

3exp@2cE0ˆD~$SN%!‰#1p…‡‰ ~63!

and hence, the integral effective rate constant obeys

QN
(II )>

~N11!

c
ln†1/„~12p!exp@2cE0ˆD~$SN%!‰#1p…‡.

~64!

For d-dimesnional Polya walks, in particular, from Eq.~64!
we find the following explicit lower bounds on the integr
effective rate constant in the model II:

d51, QN
(II )>~12p!S 2N

p D 1/2

@11O~1/AN!#,

d52, QN
(II )>~12p!

pC2N

ln~N!
@11O„1/ln~N!…#, ~65!

d.2, QN
(II )>

N

c
ln†1/„~12p!

3exp@2c/P~0u0;12!#1p…‡

3@11O~1/AN!#,

which hold in the limitN→`.
On comparing the results in Eqs.~53! and~65!, we notice

that both lower and upper bounds display the sameN depen-
dence, but differ slightly in numerical factors. This means,
turn, that theN dependence of the integral effective reacti
rateQN

(II ) is determined here exactly by Eqs.~53! and ~65!.
Consequently, at sufficiently large times the decay laws
the models I and II of gated target annihilation are essenti
the same~up to a possible difference in characteristic dec
times!, and coincide with the decay law predicted for th
ungated model of Sec. II.

Note also that the time evolution of theA particle survival
probability for the model II defined in a one-dimension
continuum was considered earlier in Ref.@13#. Within the
framework of the heuristic Smoluchowski-type approach
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was predicted that the long-time decay ofPN should follow
the decay law in the first line in Eq.~8!, i.e., should proceed
at long times exactly in the same fashion as that for
model I and, consequently, should be essentially the sam
in the ungated target problem. While intuitively such a b
havior seems to be quite plausible for low-dimensional s
tems@see the discussion following the Collins-Kimball resu
in Eq. ~36!# and, as a matter of fact, agrees with our pred
tion in Eq. ~53!, one still cannot, in principle, rule out th
possibility that the integral effective reaction rates for mo
els I and II may have different numerical factors even in lo
dimensions. The point is that the Smoluchowski approac
Ref. @13#, which is a continuous-space counterpart of t
Rosenstock approximation, here allows one to determ
only a lower bound on the target survival probability a
thus cannot produce exact numerical factors.

V. MODEL III: AN UNGATED, MOBILE A PARTICLE
AND IMMOBILE, RANDOMLY PLACED,

STOCHASTICALLY GATED TRAPS B

We turn next to the case of stochastically gated trapp
reactions, focusing first on the situation involving an unga
A particle, which performs a discrete-time, homogene
random walk on ad-dimensional lattice starting from th
origin at n50, in the presence of immobile, random
placed, stochastically gatedB particles. The properties of th
gates are the same as defined in model I.

For this model, the indicator function of the reaction eve
can be written down

CN5 lim
b→`

expF2b (
n50

N

(
k51

K

I~rn2S(k)!hn
(k)G

5 )
n50

N

)
k51

K

lim
b→`

exp@2bI~rn2S(k)!hn
(k)#, ~66!

whereS(k) are d-dimensional lattice vectors denoting pos
tions ofK trapsB, while rn defines the lattice position of th
A particle at thenth step.

Averaging first over the reactivity of the traps, we read
find

C̄N5 )
n50

N

)
k51

K

lim
b→`

exp@2bI~rn2S(k)!hn
(k)#

5 )
n50

N

)
k51

K

$~12p! lim
b→`

exp@2bI~rn2S(k)!#1p%.

~67!

Further on, noticing that

~12p! lim
b→`

exp@2bI~rn2S(k)!#1p

5H p, rn5S(k)

1, rnÞS(k),
~68!

and hence, rewriting this expression as
e
as
-
-

-

-

in
e
e

g
d
s

t

~12p! lim
b→`

exp@2bI~rn2Sk!#1p5exp@2apI~rn2Sk!#,

~69!

we have that the indicator function of the reaction eve
averaged over the reactivity fluctuations, takes the follow
form:

C̄N5expF2ap(
n50

N

(
k51

K

I~rn2S(k)!G . ~70!

Note that the averaged indicator functionC̄N is now an ex-
ponential of the factorap times the number of times a give
random walk trajectory starting atn50 at the origin visits a
given array of lattice sites$S(k)%, i.e., can be thought of a
the moment generating function of the ‘‘residence time’’ o
single random walker on a given array$S(k)%. From a differ-
ent perspective,CN can be viewed as the partition functio
of a phantom polymer chain on a lattice with random
placed energetic barriers of finite height: the limitap→`
(p→0), then corresponding to the case of randomly plac
impenetrable obstacles@28#.

Now the double average over the trajectories of theA
particle and over the positions of the traps can be writ
down as follows:

PN5^C̄N&5E0H K )
k51

K

expF2ap(
n50

N

I~rn2S(k)!G L J
5E0H )

k51

K K expF2ap(
n50

N

I~rn2S(k)!G L J
5E0H S 1

M (
S

expF2ap(
n50

N

I~rn2S!G D KJ .

~71!

Turning next to the infinite-space limit, i.e., lettingM ,K
→`, while keeping their ratio fixed, we have that

PN5E0H X12
1

M (
S

F12expS 2ap(
n50

N

I~rn2S!D GCKJ
5E0HexpF2c(

S
M$S%~$rN%!GJ, ~72!

whereM$S%($rN%) is defined by

M$S%~rn!5S 12expF2ap(
n50

N

I~rn2S!G D . ~73!

Note thatM$S%($rN%) is quite similar to the functional de
fined in Eq.~28!, with the only minor difference being tha
the latter is associated with the multiple visits to some giv
site S; that is, M$S%($rN%)512pj if the site S is visited
exactly j times by anN-step walk starting at the siter050.
Consequently, the sum(SM$S%($rN%) probes the occupanc
of the sites visited by a given realization of a random wa
trajectory~see Fig. 5!.

However, an important difference with the previous
considered model, which makes the computation ofPN for
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model III to be a fairly complex problem, is that he
we have to deal with a moment-generating function
M$S%($rN%), compared to a much easier problem
computation of an expected value ofM$S%($rN%), encoun-
tered in the model I. Below we consider first predictio
based on some approximate approach—the Rosens
approximation—and next derive rigorous lower and up
bounds, which both have the same dependence on the timN
but differ in the prefactors.

A. Rosenstock approximation. Decay pattern
at intermediate times N

We start our analysis of theN dependence of the surviva
probability in Eq.~72! by first considering the predictions o
the Rosenstock approximation. Applying the Jensen ineq
ity, we may boundPN in Eq. ~72! as follows:

PN>expF2cE0H(
S

M$S%~$rN%!J G . ~74!

To proceed further, we note that the sum(SM$S%($rN%) can
be written down formally~see Fig. 5! as a polynomial with
random coefficients,

(
S

M$S%~$rN%!5(
j 51

N

V ( j )~$rN%!~12pj !

5S~$rN%!2(
j 51

N

V ( j )~$rN%!pj , ~75!

where eachV ( j )($rN%), j 51, . . . ,N, is a random variable
which equals the number of sites in a givenN-step random
walk trajectory $rN% visited exactly j times. Note that

FIG. 5. A realization of theN5130 step random walk trajector
$rN% on a two-dimensional square lattice. The sites visited t
times are marked by circles, the sites visited three times by squ
and the sites visited four times by diamonds. For this particu
realization(SM$S%($rN%) is a fourth-order polynomial with respec
to the gating probabilityp of the form (SM$S%($rN%)5113269p
228p2212p324p4. The coefficients in this polynomial are ran
dom, correlated variables dependent on the particular realizatio
trajectory$rN%.
f
f

ck
r

l-

V ( j )($rN%) are not independent; this can be readily seen
one notices that the combination( j 51

N jV ( j )($rN%) is a non-
fluctuating quantity and equals the total number of sites v
ited by anN-step walk, i.e.,N. Lastly, the random function
S($rN%) in Eq. ~75! denotes, as previously defined, the nu
ber of distinct sites visited by anN-step random walk tra-
jectory $rN%,S($rN%)5( j 51

N V ( j )($rN%).
Consequently, we find that Eq.~74! attains the following

form:

PN>expF2cE0ˆS~$rN%!‰1c(
j 51

N

E0ˆV ( j )~$rN%!‰pj G .

~76!

The averaging in the exponent in Eq.~76! can be performed
directly using the results obtained in Ref.@25# for the gener-
ating function of the expectationE0ˆV ( j )($rN%)‰. On the
other hand, it is evident that for homogeneous random wa

E0H(
S

M$S%~$rN%!J [(
r0

Er0
ˆM$0%~$rN%!‰, ~77!

which implies, in turn, that in terms of the Rosenstock a
proximation the integral effective reaction rate for model I
QN

(III ) , has exactly the same form as that obtained for mo
I. As a matter of fact, this does not seem to be surpris
since the mean-field-type Rosenstock approximation is
sensitive to the fact which of the reactive species precisel
mobile and which is fixed@see Eqs.~74! and~77!#. However,
a profound difference between these two models does e
and below we will show that the large-N decay ofPN pro-
ceeds slower than it is predicted by Eqs.~39!, ~42!, and~45!.

B. Large-N decay of the survival probability

First of all, we note that in virtue of Eq.~75! and of an
evident observation that for any given random walk traje
tory $rN% all V ( j )($rN%) are non-negative, one finds that

M$S%~$rN%!<S~$rN%!, ~78!

which implies that, quite trivially,PN is bounded from below
by

PN>E0ˆexp@2cS~$rN%!#‰. ~79!

On the other hand, for anyp<1 and anyj .0, the difference
12pj>12p. Consequently, the survival probability is a
ways bounded from above by

PN<E0ˆexp@2c~12p!S~$rN%!#‰, ~80!

i.e., large-N decay ofPN in model III proceeds slower than
the decay in the ungated trapping problem~Sec. II!, with the
concentration of traps equal toc(12p). This inequality,
however, does not seem to be trivial at first glance, since
model III the factorc(12p) represents only the averag
value of the active traps concentration, which does fluctu
in time and may exceedc(12p) at certain time moments.

Finally, taking advantage of the analysis in Ref.@30#, we
infer from two latter inequalities that the integral effectiv
reaction rate for the model III obeys the two-sided inequa

o
es,
r

of
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ad~12p!2/(d12)S N

c D d/(d12)

<QN
(III )<adS N

c D d/(d12)

.

~81!

Note now that both lower and upper bounds show the sa
dependence onN ~but have slightly different prefactors!,
which insures that in the large-N limit the integral effective
reaction rateQN

(III ) grows in proportion toNd/(d12) and con-
sequently, the decay of the survival probability for model
is described by the dependence ln(PN);2Nd/(d12), i.e., the
sameN dependence as in the ungated case@29,30#.

VI. MODEL IV: A MOBILE, GATED A PARTICLE
AND RANDOMLY PLACED FIXED TRAPS

Consider, finally, a trapping model involving anA particle
bearing astochasticgate and performing a lattice rando
walk in the presence of randomly placed, immobile unga
traps. For such a model the indicator function of the react
event can be written as

CN5 lim
b→`

expF2b (
n50

N

hn(
k51

K

I~r n2S(k)!G , ~82!

which equals unity if anN-step trajectory$rN% does not visit
any site from a given array$S(k)% in the reactive state, an
turns to zero if any ofrn , n50,1, . . . ,N, coincides with any
S(k) whenhn51.

We turn first to averaging the indicator function of th
reaction event@Eq. ~82!# over the traps’ placement on th
lattice. First rewritingCN in Eq. ~82! in the factorized form

CN5)
k51

K

lim
b→`

expF2b (
n50

N

hnI~r n2S(k)!G , ~83!

and noticing that since all traps are placed independentl
each other, all multipliers in Eq.~83! appear to be statisti
cally independent, we have that the indicator function av
aged over the traps’ placement reads

^CN&$S(k)%5S 1

M (
S

lim
b→`

expF2b (
n50

N

hnI~rn2S!G D K

,

~84!

where the brackets with the subscript$S(k)% stand for the
averaging with respect to the positions of the traps. Ne
turning to the infinite-space limit, we find that^CN&$S(k)% is
given explicitly by

^CN&$S(k)%5exp̂ 2cS~$rN%u$hn51%!‰, ~85!

where the functional

S~$rN%u$hn51%!5(
S

F12IS (
n50

N

hnI~rn2S!D G ~86!

determines the number ofdistinct sites visited in thehn
51 state by a givenN-step trajectory$rN%, or, in other
words, the number of distinct sites visited by theA particle
being in the reactive state within a given realization of
N-step random walk. Below we will study the temporal ev
e

d
n

of

r-

t,

-

lution of the function in Eq.~85!, averaged over the reactiv
ity fluctuations and trajectories$rN%, first using the Rosen-
stock approximation and then evaluating rigorous lower a
upper bounds.

A. Rosenstock approximation. An intermediate time decay

Now consider the prediction of the Rosenstock-type
proximation for theA particle survival probability in mode
IV. Applying the Jensen inequality, we have that the parti
survival probability in model IV is bounded by

PN>exp@2cE0ˆS~$rN%u$hn51%!‰#. ~87!

The average ofS($rN%u$hn51%) over the reactivity fluctua-
tions can be performed straightforwardly. First of all, w
rewrite Eq.~86! as

S~$rN%u$hn51%!5(
S

F12IS (
n50

N

hnI~rn2S!D G
5(

S
S 12

1

2pE0

2p

dZ)
n50

N

3exp@ iZhnI~rn2S!# D . ~88!

Next, averaging the latter equation with respect to the dis
bution of the variables$hn%, we have that

S~$rN%u$hn51%!5(
S

S 12
1

2pE0

2p

dZ$p

1~12p!exp@ iZ#%(
n50

N

I(rn2S)D
[(

S
MS~$rN%!, ~89!

where the functionalMS($rN%) was defined previously in
Eq. ~73!.

On comparing the result in Eq.~89! with Eqs. ~74! and
~77!, we notice that within the Rosenstock approximation t
integral effective rate constant for model IV appears to
exactly the same as the one previously found for model
and coincides, as well, with the result obtained for the in
gral effective rate constant in model I. Hence this appro
mation predicts that the decay of the survival probability
model III proceeds exactly in the same fashion as the de
laws obtained for models I and III. In other words, th
Rosenstock approximation appears to be completely inse
tive to the fact of precisely which of the reactive species
mobile, and precisely which of them is stochastically gat

B. Large-N decay of the survival probability

We start with the derivation of a rigorous lower bound
the A particle survival probability. Here an averaging of th
indicator function of the reaction event in Eq.~82! with re-
spect to the reactive state of the mobileA particle can be
performed as follows:
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C̄N5 lim
b→`

expF2b (
n50

N

hn(
k51

K

I~rn2S(k)!G
5 )

n50

N

lim
b→`

expF2bhn(
k51

K

I~rn2S(k)!G
5 )

n50

N H ~12p! lim
b→`

expF2b(
k51

K

I~rn2S(k)!G1pJ .

~90!

Next, noticing that

~12p! lim
b→`

expF2b(
k51

K

I~rn2S(k)!G1p

5H 1, (
k51

K

I~rn2S(k)!50

p, otherwise,

~91!

and hence, that

~12p! lim
b→`

expF2b(
k51

K

I~rn2S(k)!G1p

5expH 2apF12IS (
k51

K

I~rn2S(k)!D G J , ~92!

we find that the averaged indicator function of the react
event obeys

C̄N5exp@2apN$S(k)%~$rN%!#, ~93!

where

N$S(k)%~$rN%!5 (
n50

N F12IS (
k51

K

I~rn2S(k)!D G ~94!

is the ‘‘residence time’’ of a givenN-step random walk tra-
jectory on the subset of ‘‘distinct,’’ i.e., noncoinciding site
from the set$S(k)%, k51, . . . ,K. This means that if any two
~three, etc.! sites from$S(k)% coincide, i.e., the traps overlap
a visit of $rN% to such a multiply covered site singly contrib
utes toN$S(k)%($rN%). A rigorous lower bound onC̄N follows
then from an evident inequality,

(
n50

N F12IS (
k51

K

I~rn2S(k)!D G< (
n50

N

(
k51

K

I ~rn2S(k)!,

~95!

where the right-hand side determines the unconstra
‘‘residence time’’ of the sameN-step random walk trajectory
on the set of all sites from$S(k)%. Clearly, the inequality in
Eq. ~95! becomes an equality if all sites$S(k)% are distinct,
n

d

e.g., when the traps obey a hard-core exclusion. Con
quently, in virtue of the inequality in Eq.~95!, we have that

C̄N>expF2ap(
n50

N

(
k51

K

I~rn2S(k)!G , ~96!

where the right-hand side, as one can readily see, is exa
the indicator function of the reaction event for model I
averaged over the reactivity fluctuations. This implies t
inequality

QN
(IV)<QN

(III )<adS N

c D d/(d12)

, ~97!

which signifies, in particular, that similarly to the relatio
between twoQN’s, describing survival of gated and ungate
targets~models II and I!, the integral effective reaction rat
for the model involving a mobilegated Aparticle in the
presence of immobile ungated traps is generally less tha
equal to the corresponding rate for the model, with t
ungated Aparticle performing random walk in presence
gated traps.

We finally proceed to the derivation of a rigorous upp
bound on theA particle survival probability in model IV. To
do this, let us turn back to the functionalS($rN%u$hn51%) in
Eq. ~86!, and recall that it determines the number ofdistinct
sites visited by a particle appearing in thereactive state
within its N-step random walk$rN%. Note that similarly to
the situation encountered in the derivation of the analog
bound in model II, here there is no restriction as to at p
cisely which visit the particle appears in the reactive sta
that is, each siteS can be visited many times by an inactiv
particle until it eventually reappears at this site in the re
tive state, which event contributes to the overall value of
functional S($rN%u$hn51%). Hence, to find a lower bound
on S($rN%u$hn51%) in Eq. ~86! we will pursue the strategy
employed already in Sec. IV, i.e., we will try to restrict th
order of the reactive visit to siteS. Here, however, this ap
pears to be a slightly more delicate problem, since we h
to deal with the realization-dependent functional in Eq.~86!,
rather than with its expected value.

To find a lower bound onS($rN%u$hn51%), we thus pro-
ceed as follows: First, we constrain the summation in E
~86!, supposing that it runs not over all sites of aninfinite
lattice, but only over somef inite subset$S* %. Clearly, since
the functional@12I„(n50

N hnI(rn2S)…# is positive definite,
such an operation will result in a lower bound o
S($rN%u$hn51%). Next we define the subset$S* %; we stipu-
late that for a given realization of a particle’s trajectory, t
subset$S* % is just a collection of such lattice sitesS on
which the particle appeared for the first time in the react
state, i.e., sites which remained ‘‘virgin’’ until the first vis
in the hn51 state.

More formally, a derivation of such a lower bound o
S($rN%u$hn51%) can be based on the evident inequality b
tween the following two indicator functions:



i

-
t

-

th

rty

e

,
e
it

ve
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IS~$rN%u$hn51%!5F12IS (
n50

N

hnI~rn2S!D G
>DS~$rN%u$hn51%!

5 (
n50

N

hnH IS (
l 50

n21

I~r l2S!D
2IS (

l 50

n

I~r l2S!D J , ~98!

where the indicator function on the left-hand side of Eq.~98!
equals 1 ifS has been visited at least once by the particle
the reactive state within a given realization$rN% of its N-step
walk, and equals 0 otherwise. Meanwhile,DS($rN%u$hn
51%) equals 1 if, within anN-step walk, the particle ap
peared for the first time on siteS in the reactive state, no
having visited this site before; otherwise it is equal to 0.

Summing both sides of the inequality in Eq.~98! over all
lattice sitesS, we have, consequently, that

S~$rN%u$hn51%!

5(
S

IS~$rN%u$hn51%!

>(
S

(
n50

N

hnH IS (
l 50

n21

I~r l2S!D 2IS (
l 50

n

I~r l2S!D J
5 (

n50

N

hn(
S

H F12IS (
l 50

n

I~r l2S!D G
2F12IS (

l 50

n21

I~r l2S!D G J , ~99!

which yields, by virtue of the definition in Eq.~59!, a desired
lower bound of the form

S~$rN%u$hn51%!> (
n50

N

hnD~$rn%!, ~100!

where the right-hand side of Eq.~100! determines the num
ber of ‘‘virgin’’ sites visited by anN-step random walk in the
reactive state. Equation~100! implies, in turn, that the func-
tion ^CN&$S(k)% in Eq. ~85! is bounded from above by

^CN&$S(k)%< )
n50

N

exp@2chnD~$rn%!#. ~101!

Now, averaging both sides of the latter equation over
fluctuations of the reactivity, we find
n

e

^CN&$S(k)%< )
n50

N

exp@2chnD~$rn%!#

5 )
n50

N

exp@2chnD~$rn%!#

5 )
n50

N

ˆ~12p!exp@2cD~$rn%!#1p‰. ~102!

Recollecting next that the realization-dependent prope
D($rn%) assumes only two values21 or 0, and hence, that

~12p!exp@2cD~$rn%!#1p

5H $~12p!exp@2c#1p%, D~$rn%!51

1, D~$rn%!50,

~103!

we may rewrite quite formally the bound in Eq.~102! as

^CN&$S(k)%< )
n50

N

ˆ~12p!exp@2cD~$rn%!#1p‰

5expF2 lnS 1

~12p!exp@2c#1pD (
n50

N

D~$rn%!G .

~104!

Finally, noting that(n50
N D($rn%)5S($rN%), we find that the

A particle survival probability obeys

PN5E0$^CN&$S(k)%%

<E0H expF2 lnS 1

~12p!exp@2c#1pDS~$rN%!G J ,

~105!

and hence, by taking the lower bound in Eq.~97! into ac-
count, we arrive at the following two-sided inequality for th
integral effective rate constant in model IV:

ad

c F lnS 1

~12p!exp@2c#1pD G2/(d12)

Nd/(d12)

<QN
(IV)

<adS N

c D d/(d12)

. ~106!

Note that again, both sides of the inequality in Eq.~106!
show the same dependence on the timeN and consequently
exactly determine theN dependence of the integral effectiv
rate constant in model IV. We also remark that in the lim
c!1 one has that ln†1/„(12p)exp@2c#1p…‡'(12p)c, and,
hence, in this limit the lower bound on the integral effecti
reaction rate for model IV@Eq. ~106!#, coincides with the
lower bound onQN

(III ) in Eq. ~81!.
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C. Conclusion

To conclude, we have studied the time evolution of theA
particle survival probability in four models of stochastica
gated, diffusion-limited pseudo-first-order reactions of t
form A1B→B. We have considered two different mode
of targetlike annihilation reactions, where the first one co
cerns the survival of a single, immobileA particle~the target!
in the presence of randomly moving gated scavengerB
~model I!, and the second focuses on the fate of a ga
immobile A particle in the presence of randomly movin
ungated scavengersB ~model II!. Two other examples o
stochastically gated pseudo-first-order reactions are
nished here by trapping reactions between a mobile, ung
A particle and a concentration of randomly placed, immob
gated trapsB ~model III!; and the reverse situation with
mobile gatedA particle and randomly placed, immobile, u
gated trapsB ~model IV!. In all the models studied we hav
supposed that mobile species perform symmetric lattice
dom walks. In addition, we have adopted the two-state P
son gating model of Ref.@14#, in which each of the gates i
supposed to be in either an active state on a blocked one
to update its state at each tick of the clock at random, in
pendently of the previous history as well as of the ga
imposed on other particles.

We have demonstrated that model I allows for an ex
solution, and derived explicit asymptotic decay forms
lattices of different spatial dimensionalities. Curious
enough, it appeared that for low-dimensional latticesd
<2), for which lattice random walks are recurrent, the lon
time behavior is independent of the presence of stocha
gates~as soon as the gating probabilityp,1) and proceeds
exactly in the same fashion as for reactions with we
defined, nonfluctuating reaction rates~Sec. II!. Correction
terms do, however, depend on the gating probabilityp and
may be important for reactions in which the species
blocked most of the time. Next, we have found that
model I in higher dimensions the decay is described b
purely exponential function of time with a characteristic tim
dependent on both the gating probability and on the proba
ity of the eventual return to the origin. A physical explan
tion of the predicted behavior has also been provided.

Further on, for model II the decay pattern has been de
mined exactly in the form of rigorous lower and upp
l-
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bounds showing the same dependence on the timeN but
having slightly different prefactors. We have demonsta
that the decay of theA particle survival probability in this
model is characterized by essentially the same time dep
dence as that for model I, i.e., the integral effective react
rate follows the behavior of the expected number of disti
sites visited by anN-step random walk, but may have a di
ferent numerical factor.

Next, for models III and IV, we have presented som
approximate results, based on the so-called Rosenstock
proximation, which may provide a plausible description
the kinetic behavior at intermediate times, as well as ex
results concerning the long-time evolution of theA particle
survival probability. We have demonstrated that within t
Rosenstock approach no difference exists between the
netic behavior in models III and IV. Moreover, we hav
shown that the decay forms coincide with the exact res
obtained for model I. The long-time evolution of the dec
functions in models III and IV has been determined in t
form of rigorous lower and upper bounds characterized
the same dependence on the timeN. We have also realized
that in the case of stochastically gated trapping reactions
long-time decay of theA particle survival probability has
essentially the same form as that describing the kinetic
havior of their ungated counterparts~Sec. II!; however, the
characteristic times might be renormalized to include the
pendence on the reaction probability.

As an interesting by-product of our analysis, we have a
shown that the survival probability in all four models und
study can be interpreted as a moment generating functio
some refined characteristics of random walk trajectories
particular, we have demonstrated that for model I the s
vival probability is the moment generating function for th
number of visits rendered by a concentration of independ
random walkers to the origin. In other models this surviv
probability appears as the moment generating function of
number of self-intersections of random walk trajectories,
residence time on a disordered array of marked sites,
number of sites visited exactly a given number of times, a
so on. Consequently, our results also apply to the asymp
cal behavior of the above mentioned generating functio
which in many cases is not known yet.
.
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