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In this paper we study the kinetics of diffusion-limited, pseudo-first-o&ieiB— B reactions in situations
in which the particles’ intrinsic reactivities are not constant but vary randomly in time. That is, we suppose that
the particles are bearing “gates” which fluctuate in time, randomly and independently of each other, between
two states—an active state, when the reaction may take place beAwaedB particles appearing in close
contact; and a blocked state, when the reaction is completely inhibited. We focus here on two customary
limiting cases of pseudo-first-order reactions—the so-called target annihilation and the Rosenstock trapping
model—and consider four different particular models, such thaftharticle can be either mobile or immobile
or gated or ungated, and ungated or gd&quhrticles can be fixed at random positions or move randomly. All
models are formulated on @dimensional regular lattice, and we suppose that the mobile species perform
independent, homogeneous, discrete-time lattice random walks. The model involving a single, immobile,
ungated targeA and a concentration of mobile, gat&dparticles is solved exactly. For the remaining three
models we determine exactly, in the form of rigorous lower and upper bounds showing theNséepen-
dence, the larg& asymptotical behavior of the probability that thAgparticle survives until thé&th step. We
also realize that for all four models studied here #particle survival probability can be interpreted as the
moment generating function of some functionals of random walk trajectories, such as, e.g., the number of
self-intersections, the number of sites visited exactly a given number of times, the “residence time” on a
random array of lattice sites, etc. Our results thus apply to the asymptotic behavior of corresponding generating
functions which are not known as yet.

PACS numbgs): 05.40—a, 05.60-k, 02.50.Ey, 82.20-w

[. INTRODUCTION occurring within biomembrandg], incoherent exciton trap-
ping by substitutional traps on aromatic vinyl polymggs,
Many naturally occurring chemical reactions, or reactionsmolecular transport inside proteif$—7], and in some medi-
used in various technological and material processing oper&al therapie¢8]. Clearly, an understanding of the impact of
tions, involve molecules with a rather complex internal structhe geometrical limitations on the reaction kinetics consti-
ture. For such reactions the geometrical complexity of théutes an important challenge for the theoretical analysis.
molecules appears to be a significant rate-controlling factor, A Physically plausible approach to account for the influ-
in addition to the transport limitations and constraints im-€Nce of the geometrical restrictions on the reactivity of com-

posed by the elementary reaction act; that is, the chemicall9'ex molecules is to assume that the reaction in question, say

active groups of complex molecules involved may be effec® YENEric pseudo-first-order reaction of the form

tively screened by their inactive parts, which thus impedes
the access of the reactive species and inhibits the reaction.

For instance, geometrical restrictions are crucial for Ilgan_qS modulated by the side reactions of the foAmsA* or

binding to proteins, such as, e.g., myoglobin or hemoglobi —B*, whereA (B) stands for an active state, aAdl (B*)
[1]. Here, in the static x-ray structure of myoglobin there iS¢, 4 inactive, blocked state, in which case the reaction in
no holelfor the ligand to enter, aqd it is bglleved that blndlngEq_ (1) is complete inhibited. In other words, one says that
of the ligand occurs when the side chains blocking the engne or poth species involved in the reaction are gated, the
trance swing out in the course of their thermal motibigs.  gates changing their states in time according to some pre-
1 and 2. Similarly, intercalation of drugs by DNA may be scribed rules.
controlled by breathing motions that involve the unstacking The kinetics of gated diffusion-limited reactions has been
of adjacent pairs of bases. In some cases, the ligands themtudied analytically for nearly two decades. Following the
selves can possess a complicated internal stru¢asrexem-  seminal work of McCammon and NorthrJg], who ana-
plified, for instance, by peptidgssuch that their reactivity lyzed a simple case of a two-state gating described by an
may be influenced significantly by conformational changesarbitrary deterministic function of time, several important
Last but not least, geometrical restrictions do manifest themadvancements have been made. In particular, a classical
selves in such contexts, as, e.g., certain chemical reactior&moluchowski approachl0] was generalized in Reff11—
13] to describe the kinetics o$tochasticallygated (SG)
pseudo-first-order reactions in E@.) for both cases when
* Author to whom correspondence should be addressed. the gate is imposed on the trap®r on theA particles. It has

A+B—B, 1
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FIG. 1. A schematic illustration of the effective geometric
screening of an activé particle by inactive parts of a complex ) o ] ]
(polymed molecule. In the situation depicted in this figure the FIG. 3. Pseudo-first-ordek+B— B reaction involving a single

particle, which is attached to a polymer, is completely inaccessibldnobile immobile) A particle and a concentration of fixéthobile)
to the B species, and the reaction between them is inhibited dué® Particles taking place on a two-dimensional lattice. The gate may
solely to the geometrical restrictions. be imposed on eithek or B particles.

, . of course, not at all surprising, since diffusion-limited reac-
been realized that no symmetry exists between these tW,ns with stochastic reactivity clearly pose more complex

situations; as a matter of fact, the kinetic behavior appears tycpnjcal problems to the theoretical analysis than their un-
be rather different depending on which of the species pregateq counterparts, which themselves are not solvable ex-

cisely is being gated. Furthermore, Spoegel.[14] studied  5cy and often exhibit spectacular, essentially many-particle
the SG reactions with more general mechanisms, including genavior.

non-Markovian case, while Berezhkovski and co-workers |, this paper we study in detail the kinetics of the SG
discussed the impact of the many-particle effects on the S(Bseudo-first-order reactions in E(), involving a singleA
reactions kinetic§13,15,14. However, the available theoret- particle and a concentration Bfparticles. We focus here on
ical analysis is either based on uncontrollable assumptiongy,, limiting cases—the so-called target annihilatja®—23
akin to the Smoluchowski-type approactiese, e.g., Refs. g the Rosenstock trapping mogi2#l—and consider four
[17,18, and references therginor employs exact formal- itfarent models such that akparticle can be either mobile

isms, which do not always allow for explicit calculation of . immobile gated or ungated, and ungated or g&euir-
the corresponding decay patterns and become tractable onljes can be fixed at random positions or move randomly

when some simplifying assumptions are made. CONs€&rig 3). For computational convenience, all models are for-
quently, except for a relatively simple model involving an jated on al-dimensional regular lattice, and we suppose
immopile ungated target and a concentration of mopile SG that mobile species perform independent, homogeneous,
B particles(see, e.g., Ref§11-14)), temporal evolution of yiscrete-time lattice random walks. Further on, in regard to
the SG reactions remains incompletely understood. This iseaciivity fluctuations, we restrict ourselves to the two-state
Poisson gating model of Refl14], in which each gate is
o oB o supposed to be in either of two states, active on blocked, and
to update its state at each tick of the clock. The updating
0 process is assumed to proceed completely at random, without
o memory in time and without correlations with the gates im-
posed on the other particles.
o o o For such a gating model we analyze the time evolution of
the A particle survival probabilityPy, i.e., the probability
A that a single mobile or immobile, gated or ungageparticle
o o is not annihilated up to thBlth time step by a concentration
of immobile or mobile, ungated or gatd®i particles. For a
model involving a single immobile, ungated targetand a
O concentration of SG mobilB particles, the complete tempo-
o ral evolution of Py is calculated exactly. For the remaining
o three models we determine exactly the form of the laxge-
asymptotical decay oPy by deriving rigorous lower and
FIG. 2. In the situation depicted in this figure tiés may  upper bounds, which both show the saheependence but
diffuse through the hole opened in the course of the polymer'sslightly differ in prefactors.
thermal motion, and hence, may enter into a reaction with the An interesting by-product of our analysis, which appears
chemically activeA particle. in especially lucid fashion within the discrete-space descrip-



3390 O. BiENICHOU, M. MOREAU, AND G. OSHANIN PRE 61

tion, is that for any particular model th& particle survival — pseudo-first-order reactions in Eql) taking place on
probability Py can be interpreted as a moment generatingd-dimensional regular lattices. We will focus here and in the
function of certain functionals, which mirror the internal ge- remainder of the paper on two particular cases—the so-called
ometry of random walks trajectories—an issue which hasarget annihilation model, involving a single, immobike
recently gained renewed attention in view of many importanfparticle and a concentration of randomly movBgarticles;
applicationd25—-28. As a matter of fact, it has been known and the Rosenstock trapping model involving a single mobile
for a long time that for ungated trapping reactions takingA particle performing lattice random walk in the presence of
place on ad-dimensional lattice the survival probabili§y a concentration of immobile, randomly plac&dlparticles:
can be thought off as the moment generating function of thehe traps. In subsequent sections of our work we will study
numberS({ry}) of distinct sites visited by a given trajectory how the kinetics in these two models will be modified if one
{rn} of an N-step lattice random walk24]; in addition, for  imposes a stochastic gate on either of two species; conse-
Brownian motion in ad-dimensional continuumP can be quently, the results of this section will serve us in what fol-
interpreted as the generating function of the volume of thdows as an important point of reference.
so-called Wiener sausage, i.e., the volume swept by a spheri-
cal particle during timet [30]. We realize that for the SG
pseudo-first-order reactions some other characteristic func-
tionals of random walk trajectories come into play, which We start with the target annihilation model, which allows
probe some interesting aspects of the geometrical structure & an exact solutioi19—-22. Consider an immobilé par-
a single or of a collection of lattice random walks. Depend-ticle, located at the lattice origin, ariélparticles, which are
ing on the particular modeRy then appears as the generat- initially all placed at random positions on dxdimensional
ing function of such characteristic functionals of randomregular lattice and after that are allowed to move by perform-
walk trajectories such as, e.g., the number of selfing independent, homogeneous, discrete-time random walks.
intersections, the number of sites visited exactly a giverAs soon as any of thB’s appears at the lattice origin, tiAe
number of times, the “residence time” on a random array ofparticle is instantaneously annihilated. Thus, following the
lattice sites, and some others. Consequently, our results alderminology earlier introduced, th& particle will be called
apply to the asymptotical behavior of the corresponding genthe “target,” while theB particles will be referred to as the
erating functions, which is not yet known in many cases. ‘“scavengers”[23]. The property whose temporal evolution
The paper is structured as follows. In Sec. Il we discussve wish to study is the probabilit?N=exp[—cQ§jar)] that
two customary limiting cases of the pseudo-first-order reacthe target particle “survives” until timé\; here and hence-
tions in Eq.(1)—the so-called target annihilation model and forth ¢ will denote the number density of th® particles,
the Rosenstock trapping model—and present a brief outlinevhile Qﬁar) , in view of the pseudo-first-order of the reaction
of different results concerning their kinetic behavior in thein Eqg. (1), can be interpreted as the integral effective reaction
ungated case. In Sec. Il we consider a gated target problemate.
focusing on the survival probabiliti?y of an immobile un- Now we define the model more precisely. We first sup-
gated target in the presence of randomly moving, stochastpose that the lattice is of a finite extent and contdihsites,
cally gatedB particles. Here we derive an exact temporalwhereas the number of the scavengers is also fixed and equal
evolution of the probability that none of mobile particles hitsto K. In what follows we will turn to the limitM,K—oo,
the target within arN-step walk. In Sec. IV we study the while keeping the ratid&K/M fixed: K/M =c.
survival of an immobilegated target in the presence of a  Further on, letS¥' denote the position at which theh
concentration of mobile particles. The corresponding surscavenger appears on timh step 6=0,1,...N) for a

vival probability is found here in the form of rigorous lower gjven realization of its trajectory. Then, we construct a func-
and upper bounds, which both display the saméepen- tion ¥ of the form

dence and thus determine the temporal evolutiof gfex-

A. Target annihilation

actly. Next, in Secs. V and VI, we consider two models of . NoX )

stochastically gated trapping reactions; in the first case these W= limex —ﬁz Z (sY)

are the immobile trap8 that are supposed to be stochasti- B n=o k=t

cally gated, while the mobil@& particle is always assumed to N K

be in a reactive stat@ingated:; in the second case the mobile =11 II tlim ex,;[_/gz(sgk))], 2
n=0

A particle is assumed to bear a stochastic gate, while the
immobile trapsB are considered as perfect, nonfluctuating
traps. For both cases the particle survival probability is whereI(S(,nk)) is the indicator function,
determined exactly, in the form of rigorous lower and upper
bounds showing the sanm¢ dependence. Finally, we con-
clude in Sec. VII with a brief summary of our results.

k=1 g—o

1, X=0
= 3
7% 0, X#0, @
Il. A REMINDER ON THE KINETICS OF UNGATED

PSEUDO-FIRST-ORDER REACTIONS: TARGET
ANNIHILATION AND THE ROSENSTOCK TRAPPING
MODELS

which shows whether thkth scavenger is at the lattice ori-
gin 0 at thenth step, or elsewhere.
Note that the functionV' serves as the indicator of the
To fix the ideas, we first present a brief summary of re-reaction event; it is equal to 1 if within ad-step walk none
sults concerning the kinetics of ungated, diffusion-limitedof the K scavengers has visited the oridiie., the target
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and becomes 0 when within the “time” interv@D,N] at 12 1
least one of the scavengers has visited the origin at least EO{S({SN})}=<—) +0 —) d=1,
once. ™ VN
The property one is generally interested in computing is
not, however, the realization-dependent functiby,, but 7C, N
rather its averaged valug,=(W¥y), the average being taken EolSiSW}= In(N) +0 In2(N))’ d=2, ®)
over different realizations of scavengers’ random walks and
their initial positions. Below we will briefly outline an exact N
computation of ¥) (see also Refd19-23). _ _
Noticing first that allS{’s with different values ok are EolSASD P(0[0;17) +OON), - d=3,
independent of each other, we have that the target survival
probability can be written in the factorized form where C,=4/3/3, 1, and 2{3 for hexagonal, square and

triangular two-dimensional lattices, respectively. The con-

1 N K stant P(0|0;17) determines the probabilitR of eventual

PN:(limlBﬂmm > Eso[ eXF{—BE I(Sq)“) , (4)  return to the originP(0]0;17)=(1—R) !, and is defined
S n=o as the limit ¢é—1" of the generating functiorP(0|0;¢&)

) i =33_oPn(0]0)&N, P\ (0]|0) being the probability of find-
where the summation extends over all sites of ing a random walker at the origin at thdith step,

d-dimensional lattice, while the symbBk{- - -} denotes the  yroided that the walk has started at the origin. The
expectation on the set of different random walk trajectoriesbxact values of P(0[0;17) are 1T6(%)/(2%37%)

starting at the sit&,. Note next that JBT ()T (ST (2T (K)/(284%). T*(3)/(an%), and
N I'8(2)/(2*37%) for diamond, simple cubic, body-centered-
ESO| Iimﬁﬁmex;{ —BZ Sy cubic and face-centered-cubic lattices, respectij{/25}.
n=0 Therefore, for the target annihilation model the decay law
=Prol(S,#0 forany ne[O,N]|Sy), (5) can be co_mpgted exactly and the integral effective rgaption
rateQﬁar) is simply equal to the expected number of distinct

i.e., is equal to the probability that a random walker startings'teS visited by arN-step walk[19-23. Note also that the

at the siteS, does not visit the origin within firsN steps. &eecﬁggofr?;m acﬂptiaersérfnobgg dﬁ]ss?z:tilizgy i??spﬁﬂgr?an(;[tgrri]zézebdl-
Turning now to the infinite-space limit, i.e., lettini§,M y 9 i y

—+o while keeping their ratio fixed</M=c, we then find a stretched—exponential dependence for low-dimensional lat-
that Eq.(4) attains the form tices, on Yvh|ch the Polya walks are recqrre{]R
=1,P(0]0;17) =], and shows a purely exponential behav-
ior for lattices of spatial dimensiod>2, whereR<1 and
D P(0|0;17) is well defined.
So

_ 1
PN:“mK,MHWK/Mc( 1- M

B. Rosenstock trapping model

K
X[1—Prol($,#0 forany nE[OvN“So)]) We turn next to the so-called Rosenstock trapping prob-
lem, in which one focuses on the fate of a singl@article
performing a random walk over the lattice in the presence of
:ex;{ —c%: Proh\,(OISO)} (6) immobile, perfect, randomly placed traBs We start by as-
suming again that the lattice is finite and contaMssites.
The K traps B are placed completely at random and their
positions are determined by the lattice vectoB&) k
=1,2,... K. Denoting the lattice position of th& particle
at thenth step as,,, we can now write down the indicator
function of the reaction event as

where ProQ(0|S,) stands for the probability that a first pas-
sage from the sit&, to the origin did actually occur within
the firstN steps.

The probability ProQ(0|S) is known exactly(see, e.g.,
Ref.[25]); being summed over all possible starting points it
defines another important characteristic property of random N K
walks—the expectation of the numb&¢{S,}) of distinct \Iszlimﬁﬁmexp{ -B> > I(r,—=SM |, (9
sites visited by a given trajecto§Sy} of an N-step walk n=0k=1

starting at the origin, i.e., , - . . .
whereZ(X) is the indicator function defined in E3). The

function in Eq.(9) is equal to one for sucN-step trajectories
2 Proly(0|Sp) = EofS{S\))} (7)  Which avoid passing through any of the sif8 and turns to
S zero for those trajectories which visit at least once at least
one of these sites.
The expected number of distinct sites visited byNustep Now, we pass to averaging the function in Ef) over
walk shows different asymptotical behavior depending orthe traps’ placement. Since @&*’s are mutually indepen-
the dimensionalityd and on the type of the lattic25]. In  dent, one can write down such an the average in the factor-
particular, ford-dimensional Polya random walks, one has ized form
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1 lem, and, consequently, within the framework of this ap-
"] > limg_... proximation one finds tha®{{"=Q{{®" .
st As a matter of fact, numerical simulations demonstrate
N that a rather crude and uncontrollable approximation in Eq.
Xexr{—ﬂz I(rn—S(k’)m (10) (14) provides quite a fair description of the decay for the
n=0 trapping problem for intermediate values Wf[20], until at
very largeN some deviations emerge. The reason why the
Next, in the limitK,M —co, one has that Rosenstock approximation works at intermedibteean be
apparently explained as follows: As a matter of fact, the
1 ) N K Rosenstock approximation represents a rigorous lower bound
(Yn)=Eo| | 1 ES limg_ .ex —BZO I(r,—9) on Py, since replacement of the average of an exponential of
" the number of distinct sites visited by an exponential of the

<‘1’N>:Eo[ kﬂl

expected number is tantamount to the application of the
=Eolexp —c>, 1-limg ., Jensen inequalityexd —cQul)=exd —c(Qy)]. On the other
s hand, this inequality can be rewritten as
N
xexp( B2 Z(rn—S)> D] (W)= (ex In(¥y)])=exd (In(¥))], (19
n=0

which signifies that in such an approach the average of the
N idicator function is approximated by the exponential of the
1- nZO (rp=9) , (1D averaged logarithm of this function. Since the logarithm is a
slowly varying function, it is generally believed that its av-
erage value is supported by typical realizations of random
walk trajectories which are representative at moderate values
of N.

= Eo[exp(—cES

%

where

=S({rn}) (12

N
1—1( > I(rn—S))

n=0

2. Fluctuation-induced large-N tails of the survival probability

In the largeN limit, however, the kinetics of the trapping
reactions proceeds somewhat slower than that predicted by
Eq. (14). This happens due to some fluctuation effects, which

W)= Enfexd — cS({r —exg—cOM], (13 a mean-field-type approximation in E{.4) cannot capture.
(¥n)=Eotexd vl H-eQvl]. (9 It has been first predicted in Ref29], and subsequently
and hence, appears here as the moment generating functiBfeven by Donsker and Varadh480], that for arbitraryd
of the number of distinct sites visited by &hstep random the decay follows
walk. _ A ~2/(d+2)Ngd/(d+2)

Therefore, the major difference between the target anni- Pn~exil —aqc N I N=e, (16

hilation model and the trapping model is exactly that in they harea
. - . . d
former the survival probability is the exponential of the ex- ality [30].

pected number of distinct sites, while in the latter case it Tpe physical origin of such an anomalous decay law can

involves a fairly more complex property—its moment gen-pq jjjystrated by the following heuristic derivation. Consider

erating function. As a consequence, the trapping problem et the function in Eq(13), and suppose that for some given

turns out to be essent'lally more d_lfflcult than the target ongqgjization of theN-stepA particle trajectory(ry} the maxi-

and hef‘ce= shows_a richer b_ehawor__ _ mal excursion from the origin is equal ®.x. Conse-
To display the time evolution dPy in the trapping prob- quently, for this realization the numbé&i({r\}) of distinct

lem, we will first outline the predictions of a cer_tain heuristic gjas visited by this realization of random walk trajectory can
approach—the so-called Rosenstock a.pproxma[izmj—. be majorized a§({rN})<Rﬁ1aX, and the overall decay func-
and then write down the results of a rigorous analysis b%ion can be bounded from below by

Donsker and Varadhan, which concerns the laigasymp-
totical behaviof30].

is the number of distinct sites visited by a given trajectory
{rn}- Consequently, thA particle survival probability obeys

is a constant, dependent on the lattice dimension-

Py f dRpyaexd — cRY . JProl max{ry} =Rmay,
1. Rosenstock approximation (17)

This approximation was first applied by Rosenst24] _ -
in his studies of luminescence quenching kinetics andvhere Prob(mafty}=Rm,, is the probability that for a

amounts, in essence, to the mere replacement of the averagglimensional,N-step random walk the maximal displace-
of an exponential of the number of sites visited by an expoment from the starting point is exactly equal &,,. For

nential of the expected number, sufficiently largeN, the leading behavior of this probability
follows ~exp[—de/R,2nax], where y4 is a dimension-
(Wy)~exd —cEx{S({rnb}- (14)  dependent constant. Substituting the latter form to E@)

and noticing that the integrand is a bell-shaped function, we
As one may readily notice, this heuristic procedure yieldsthus perform the integration in terms of the saddle-point
exactly the behavior found for the target annihilation prob-method. In doing so one finds that the valueRyf,, which
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provides the maximum to the integrand is given R§,,,  We suppose here that each gate can be in either of two states,
=(2y4N/cd)¥@+2) Consequently, the overall decay func- one active and the other blocked. In the active stateBthe
tion obeys particles are reactive, whereas the blocked or inactive state
inhibits the reaction. The gate on aByparticle is supposed
Py=exqd —constx c/(@T2)Nd(d+2)] (18)  to update its state at each moment of time, at random, and
independently of the gates imposed on the other particles.
which bound displays exactly the saiNedependence as the The A particle is “annihilated” at the very moment when
result in Eq.(16). any of theB particles visits it for the first time in the reactive
Another illustrative derivation can be performed startingstate. Conversely, if any of tHg's visits theA particle in the
directly from the definition of the indicator function of the blocked state, both particles can harmlessly coexist with each
reaction eventVy in Eq. (9). To do this, suppose first that other.
for a given realization of traps’ placement the nearest to the More precisely, we specify the reactive ability of tki
origin trap B appears at a certain distante For such a scavengerK=1, ... K) at thenth step,n=0,1,... N, by
realization, evidently, W y=1 for those trajectoriefry}  assigning to each of thB particles a random variablg{" .
which do not leave withirN first Steps the VOlUmEd. Con- This random variable may assume two values: 0, with prob_
sequently, here the overall decay function can be boundeghjlity p, in which case the scavenger is neutral with respect

from below by to the reaction; and 1, with probability-1p, which corre-
d sponds to the reactive state. In all the models to be studied
Pn=max {exd —cL] here, we will suppose that the reactivities of gated particles

x Prok(|r,|<L forany ne[ON]|0)}, (19 follow independent Poisson proces§id], such that alky)?
are independent, randomly distributed variabfesorrelated
where the first multiplier gives the probability of having a with respect ton and k. The average with respect to the
trap-free void of volumé ¢, while the second one stands for distribution of 7 will be denoted by the overbar.
the probability that a random walk starting at the origin does  Further on, denoting a8 the position at which théth
not leave this volume within firdi steps. FoiN sufficiently ~ scavenger appears at theh step for a given realization of its
large, the latter probability follows ekpysN/L?], and  N-step trajectory{S{}, we construct the reaction event in-

hence, maximizing the right-hand side of H49) with re-  dicator function®, which now takes the form
spect toL, i.e., searching for the maximal lower bound, one

ends up with the dependence of essentially the same form as N K

that given by Eq(18). Consequently, these bounds demon- W= lim ex;{ —B> > 7(SW) 5k

strate that the long-time behavior of the survival probability B n=0 k=1

in Eq. (16) is supported, first, by the presence of sufficiently N K

large trap-free voids of typical size NY@*2) and second, _ . B 0y (K

by realizations of random walks constrained not to leave nﬂo kll [ilTwexp[ B I(Sg )], (20

these voids within timeN, i.e., atypical, spatially confined

ot : : : 1(d+2)
realizations for whichiry| grows in proportion toN where Z(X) is the indicator function showing whether the

only. . . - i
To conclude this section, we emphasize that the Iong—tim%\mesrg?égn%% 's at the lattice origin at thh step, or else

behaviors of the trapping and target annihilation problems
are different. Whereas the integral effective rate constant fo
the target annihilation follows the behavior of the expecte
number of distinct sites visited, the trapping decay contain
all the higher moments of this characteristic property an
tends at very long times toward the asymptotic form in Eq.
(16), i.e., Q" ~ (N/c)¥(4*2) asN—oo. Thus the decay pat-
terns differ, depending on which of the two species in @&.

The indicator functionWy is equal to 1 if within the
-step random walk none of th€ scavengers has visited the
origin in the reactive state, and turns to zero otherwise; i.e. in

he case when, within the intervid,N], at least one of the
scavengers has once visited the origin in the reactive state.
Its average over the reactivity fluctuations, i.e., the states of
the gatesngk), can be performed very directly, since for the

is the mobile one. One consequently has a counterexample oisson gating model under study all terms in the double
i S 15€q y . MPIe Boduct in Eq.(20) are statistically independent of each
the view that in reaction kinetics only the relative motion of
tother. Consequently, we have that

the species, but not the individual movements, is important.
In what follows we intend to analyze how the reaction kinet-

N K
ics will differ depending on which of the species precisely is = _ . — Ky (K
being gated. ‘PN_nl;[O kﬂl ;'Twexli BI(SY) 73]
N K
Ill. MODEL I: AN IMMOBILE TARGET A AND B . K
RANDOMLY MOVING STOCHASTICALLY GATED —nﬂo kﬂl {(1—p) lim exd — BZ(SY) ]+ p}. (21)

SCAVENGERS B por
We start our analysis of stochastically gated pseudo-firstFurther on, noticing that
order reactions considering first survival of an immobile tar-
get in the presence of a concentration of mobile gated scav- lim exp[—ﬁI(Sﬁ"))]: 1_1(5f1k)), (22)
engersB—the model which again admits an exact solution. B
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Ap ber of visits to the origin by random walkers which are ini-
tially uniformly distributed with a given number densityon
an infinite d-dimensional lattice.

We next pass to averaging over the scavengers’ trajecto-
ries. Noticing that all multipliers in Eq(25) with the same
index k are again statistically independent of the multipliers
with a differentk, we may write this average as

|

i > -1 <exp[—ap§ I(Sﬂnk))D

=

NEYNE

N

K
PN=<ﬂ7N>=<k1]l exp[—apZ 7(S)

n=0

EN

0 X k=1 n=0
FIG. 4. Representation of thgparticles’ trajectories in the form 1 N K
of “directed polymers.” Numbers on the axis denote the total =(_ 2 ESO exr{ _apE I(Sn)” ) .
number of crossings of different points on this axis by different MS n=0
trajectories. (26)
and, hence, that Turning to the infinite space limit, we find from E®6) that

the survival probabilityPy follows

(1—p) lim exd — BZ(S¥) ]+ p=exf — a,Z(SV) ],

B*}OO 1 N K
PN= l_ME 1—Eso[exp[—ap2 s, })
ap=—In(p), (23) % n=0
we find that the indicator function of the reaction eviyg, ZGXF{ — 02 ESO{M{O}({S\I})}} (27
averaged over the reactivity fluctuations, takes the form S

Vy=exf — apN({gp})], (24)  where M, ({Sy}) is a functional of a givemN-step random
walk trajectory, which is defined by

where

M ({S\}) = . (29

N
1—ex —apnzo I(Sn))

N K
N({%”}ano gl Z(s). (25)

_ . _ One notices now thaM o, ({Sy}) again counts a number of
Note now that the functional({S{{’}) determines the num- yisits to the origin by a giveiN-step random walk trajectory
ber of times thatk given N-step random walk trajectories with its starting point being fixed atS,. That is,
{S\,k)}, with their starting points at fixed positiorﬁk), pass Mg ({Sy})=0 for suchN-step trajectories, which never
through the origin. Note also that here all walks contributepass through the origin, equals—p for such trajectories
independently, which means that the simultaneous visk of which visit the origin only once, and{pj for those trajec-
walkers is counteck times, and henceN({qu)}) can be tories which do it exactly times. Consequently, the expected
interpreted as the “residence time” at the origin #rinde-  value of the functionalM;o,({Sy}), which enters the expo-
pendent random walkers. nential in Eq.(27), can be written down as the following

As a matter of fact, the numbe¥({S¥'}) can be also polynomial in powers of the gating probability

viewed from a different perspective, which turns to be rather
useful for illustration of the distinction between different N ,
models. In Fig. 4 we depict, for a one-dimensional case, a  Es{M({SW}=2> BP(0[S)(1-p'* %9, (29
given realization of several random walks trajectories in =0
form of “directed polymers” in 1+-1 dimensions, th&-axis , M i
being the timen; in this Ianguage/\/({%k)}) appears as the where Js,0 IS the Kroneckers and By’(0|S) is the prob-
total number of times that am axis is intersected on a seg- ability that a simple random walk starting from the s8g
ment[o,N] by a brush oK phantom directed polymers with visits the Origin in the first\ Step_S eXaCtIy times [25] We
their ends fixed on a-dimensional substrate. The survival adhere here to the definition f@{’(0|S,) presented in Ref.
probability Py, can then be thought of as the generating func{25], and adopt the convention that the initial moment
tion of the moments of the number of visits renderedkby =0 is regarded as the zeroth visit to the g
independent walkers to the origin during “time!, or of the We turn next to the analysis of thé-dependence of the
number of intersections of the axis on the segmer0,N]  integral effective reaction rate for the modelQ{}’ . It fol-
by a brush of directed polymers. In the infinite space limitlows from Eq.(29) thatQﬂ) is defined as the polynomial of
Py is hence the generating function of moments of the numthe form
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=z

QV=2 > BP0IS)(1-pl " %0). (30) > 2 (1-ph > BR0|Sy)EN
S i=0 S#0 =1 N=1

1— F(0|0 &)

To computeQY) for any N, we introduce the generating ST 1-¢ ]2 (1-p))F(0]0;¢)~

function
x| 2 F<0|so;§>}

o0 Sp#0
N ey= (I &N
QM(¢) NZO QV'¢ _1-F(0/0;¢) 1-p

m 1-¢ (1-F(0]0;£))(1—pF(0]0;&))
=(1-p) > BY(00)e" 1
N=0 X (1—F(0[0;&)) —g—P(O|O &)
+> (1-p Y > gP(0jo)eN _1-p 1-F(0[0;§) | 1 _
=1 = N ST £1-pFr0j0:d)|1-¢ P(0[0;6)|, (34

+ E E (1- p')E BP(0|Sp) €N,

540 =1 whereP(0|0;£), as usual, stands for the generating function
of the probabilityPy(0|0) of having a walker at the origin

(3D on theNth step, provided that the walker started his random

walk at the origin. Consequently, summing up the results in

where we have made use of an evident fact that a||Eqs (32—(34), we obtain the following exact expression for

ﬁﬁ)(0|so) vanish forj>N. the generating function:
Now, to evaluate the generating functigi’(£) explic-
itly, we calculate three different sums entering E2{l). First M e (1-p) 1-F(0]0;&)
of all, we find that Q (6)—(1_5)2 1—-pF(0]0;¢)
. 1 (1-p)
(1-p) 2, B(0]0)¢" (1—£)2 P+(1-p)P(0[0:§)
- N —sg 1t —P N (35)
=(1-p){ 1+, (1—2 Fn(o|0))§N] (1-p)P(0|0;&)]
N=1 n=1
N S(¢) being the generating function of the expected number
=(1-p) 1+——n§_: F (0|0)N§_‘4n & of distinct sites visited by arN-step random wall25],
- - S(€)=3{_oEolSUSWHIEN. In principle, the integral effec-
_1-p tive reaction rate for model I valid for arly can be obtained

(1-F(0|0:¢)), (32 now by inverting the result in Eq35), which will require,
however, computation of very complex integrals.

We now turn to an analysis of the lar@\ebehavior of the
whereF(0]0;&) is the generating function d,(0|0)—the  reaction rateQ{’. However, before doing this, it may be
average probability that a random walk trajectory starting aexpedient to make first the following observation, which
the origin returns to the origin for the first time exactly on might seem to be quite surprising at the first glance:
the nth step[25]. Further on, we have The result in Eq(35) reveals that forecurrentrandom

walks the leading larg& behavior of the integral reaction
) B rate Q) should beindependenbf the gating probability.
. i It happens actually because for recurrent wal®|0;&)
121 (1-p/ 1)N21 ﬁf\{)(o|0)§N —+w asé—1" (N—o=), and hence, the expression on the
right-hand side of Eq.35) appears to be independentmfin
virtue of the Tauberian theorem, it implies that the effective

|_\
U‘f\-

=1T§(1—F(0|0;§))JZl (1-p!*HF(0]0;¢) integral reaction rat®\) is independent op whenN— .
Moreover, the result in Eq(35) shows that for recurrent
1—-p F(0]0;&)[1+p(1—F(0[0;&))] walks the leading aN— o behavior ofQ{}’ is defined ex-
= . . (33 ly by th d number of distinct sites visited b
1—¢ 1-pF(0[0;¢) actly by the expected number of distinct sites visited by an

N-step random walk. Consequently, for recurrent walks and
N— oo the target survival probabiliti?y is not influenced by
and, eventually, fluctuating gates imposed on the scavengers, and has exactly
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the same form for reactions which are subject to stochastiactly and has a particularly simple forfsee, e.g., Ref25]),

gating or reactions in which the scavengers are always in the(0|0;¢) =1— 1 — £2. Consequently, in this case the gen-

reactive stat¢20-23. erating functiorQ("(¢) of the integral effective reaction rate
On the other hand, such a behavior is not counterintuitiveobeys

and agrees with our previous knowledge of the diffusion-

limited reactions kinetics. The point is that imposing a fluc- )y e (26—1)(1—p) V1+¢§

tuating gate on otherwise perfect scavengers is in a way simi- QY= (1-¢)%  1-p+ p\/l——gz' (37)

lar to imposing the constraint that annihilation of the target

by a scavenger may happen with some finite probability, ofn the asymptotical limité—1~ (or equivalently, wherN

at a finite rate prescribed by certain elementary reaction act, «) we find then from Eq(37) that

constantK,, (Kg<®). Following the seminal mean-field

analysis of Collins and Kimball31] (see also Refg18] and NA p

[33] for more detail the overall reaction constant taking ~Q"(é)= - 3/2_2(1—p)(1—§) +O(1N(1-¢)).

into account both the constraints imposed by the elementary (1=¢) 39)

reaction actfinite K|) and the transport limitationsn order

to react, particles have first to find each other in the course qfience, by virtue of a Tauberian theorem, we have that, in the

their random motionsfollows limit N—oo, the effective reaction rate follows
1 1/2
AQN/IN) t=——+ , 36 8N p 1
( QN ) Ke| KSmoI ( ) F\Pz 7 _2_1_p +0 \/_N ’ (39)

whereKg o is the so-called Smoluchowski constant which ) ]
equals the diffusive current through the surface of an immol-€., @ we have already remarked, the leading behavior as
bile, perfectly adsorbing sphere. Now, it is well-knovgee, N—>oo_ in case of the target annihilation problem with sto-
e.g., Ref[18] for more discussionthat for low-dimensional ~chastic gates imposed on the scavengers is exactly the same
systems the Smoluchowski constant is not a real constant b@g in the case of its ungated counterpéiy. (8)]. The first
rather a time-dependent coefficient which vanishes as timgorrection term, however, does depend on the gating prob-
evolves. This means that in low dimensions random transpo@Pility p and diverges whep—1, i.e., in the limit when
of particles offers progressively higher resistance with resScavengers are being completely inert with respect to the
spect to the overall reaction rate than the constraints imposdgaction. A simple comparison of the first two terms in Eq.
by the elementary reaction rate, which results ultimately in 439 shows that the universgb-independent behavior is es-
kinetics which is totally controlled by random transport of tablished wherN exceeds a certain crossover vahie, such
particles toward each other and is independer gf This  thatN*~mp?2(1—p)® Note also that a similar behavior
is precisely the effect which we observe in case of low-has been predicted earlier in RE£3] within the framework
dimensional stochastically gated target annihilation problemof & continuous-space description.

We note also parenthetically that a similar effect was re-
cently predicted for low-dimensional catalytically activated B. Polya walks on two-dimensional lattices

binary reactions, in which case the particles’ reactivity does The generating functioR(0,0€) is not known explicitly
not fluctuate in time but is rather a random function of theg, . Polya walks on two-dimensional lattices. However, its

space variablef32]. It has been shown here that the long- asymptotical behavior a5—1- (or, equivalently, wherN
time kinetics is also insensitive to the concentration of the_m) is well documentedsee, e.g ' Ref25)) anci is given
catalytic sites which promote reactions between randoml% TEn T
moving A particles and is independent K. Of course, in
higher-dimensional spacésuch thatd is greater than the

fractal dimension of the random walkhe effective reaction P(0|0;¢)= W—sz(

K
. Jo 1-¢
rate does depend on the density of catalytic sites kgd
Similarly, for stochastically gated target annihilation reac-yhere the constar€, has been defined in the text after Eq.

tions,P(0[0;17) is well defined ford>2, which implies, by (g) hile the constanK equals 4, 8, and 12 for hexagonal,
virtue of Eq. (35), that the leading aN—c terms in the  gquare, and triangular lattices, respectively.

integral effective reaction rate should depend on the gating From the latter equation we find then that the leading

[1+0(1-9)]. (40

probability p. _ asymptotical behavior o®()(¢) asé— 1~ follows

We focus next on the special case of Polya random walks
and proceed to determine the long-time behavior of the re- +C (1-p)In(K)
action rate in Eq.(35 explicitly, first for one- and two- QW(¢)=— 2 - 2( —)
dimensional lattices, in which case the Polya walks are re- (1-§)2In(1-¢§) mCs

current, and then fod-dimensional lattices witld>2, for

2
which the walks are nonrecurrent. Ca

X
(1-p)(1-&)%n*(1-¢)

A. Polya walks on one-dimensional lattices

For Polya random walks on one-dimensional lattices the +O< ! ) (41)
generating function of the first-visit probability is known ex- IN3(1—¢&)(1—¢&)?
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Hence, by applying the Tauberian theorem we find that foiscavenger®, which perform independent random walks on
two-dimensional target annihilation with stochastically-gateda d-dimensional lattice. For this model the indicator function

scavengers the integral effective reaction rate obeys of the reaction event can be written down as
(M N <
QN _’7TC2| ™) +7Cy[1—y—In(K)—pm/Cy(1—p)] V= lim exr{ _’Brzo 77”;1 7(sM) ], (46)
B—oe = =
N

+0 (42) where#, is the indicator variable of the gate imposed on the
n2(N) target, whileS defines the lattice positions of tieh scav-
enger at thenth step,n=0,1, ... N. We again suppose that
where y denotes the Euler constant. Note that again, in acthe target reactivity assumes at random two vatudsand 0
cord with our earlier prediction, the leading lartyebehavior  with probabilities - p and p, respectively. In the state,
appears to be independent of the gating probability and pro=1 the target is accessible for reaction and can be annihi-
ceeds exactly in the same way as for the ungated target profated by any of the scavengers arriving at the origin, while in
lem. This Iong-time regime can be observed, however, afhe staten,=0 reaction cannot take place.
considerably longer times than that for the one-dimensional Averaging first¥, in Eq. (46) with respect to the fluc-
systems; on comparing the first two terms on the right-handyations of the reactivity, we obtain
side of Eq.(42) we infer that the corresponding crossover
time N* is given by

In3(N)/’

N K
wy=[] lim exr{ —Bm2 I<s<nk>>}

WCzp} n=0 B—
N* ~exp{ , 43
1-p “3 N K
_ _ i _ k)
i.e., is exponentially large when p—1, while in one- _nljo |(l p)/!@mexr{ '3,241 I(Sf] ) +p].
dimensional systems this dependence is only algebraic.
(47)
C. Polya walks ond-dimesional lattices,d>2 .
Further on, noticing that
Finally, we turn to the case of recurrent Polya walks,
which case is realized, namely, for lattices with spatial di- K
mensiond>2. Here the probabilityR of eventual return to R _ K)
the origin is finite, and consequently, we find from E85) (1 p)glﬂqmexﬁ{ Bgl Z(S('“ )| P
that
K
1, K)=0
Q(')(§) 1-p ! +O( ! ) 2 Sf‘ "
= y = 48
(1-p)P(0[0;17)+p (1-6* 1 (1-§* S “
(44) P 2, TS>0,
which yields, in the largéN limit, the result N . )
and hence, rewriting this expression as
Q=P _N+oR) (49 «
(1-p)P(0]0;17)+p (1-p) lim exp[—ﬁgl (sy) |+
B =

Hence, for lattices witld>2, the decay of the survival prob-

ability is purely exponential in all dimensions. Note also that B

the exact result in Eq45) confirms in a way the mean-field —ex;{ %
result by Collins and KimballEq. (36)]; as a matter of fact,

it appears that Eq45) can be cast exactly into the form of we find that the indicator function of the reaction event, av-
Eq. (36 if we set Kg=(1-p)/p and Ksno  eraged over the fluctuations of the target reactivity, attains
=1/P(0]0;17). Note also that our Eq(45) confirms the the form

conclusion of Szabet al.[11] concerning the possibility of

the calculation of the steady-state stochastically gated rate — "

constant in terms of an appropriately defined ungated model. Wy=exd —apN* ({S\D)], (50)

where N* ({S¥}) is given by

1—1( kél I(S(n"))>”, (49)

IV. MODEL II: AN IMMOBILE FLUCTUATING TARGET
AND RANDOMLY MOVING UNGATED SCAVENGERS

N
We turn next to the survival of atochasticallygated, N ( {S\lk)}): 2
immobile A particle—a target, in the presence of ungated n=0

K
gl I(S§1k))” (51)
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Note now that the functionall — Z[ =K_,7(S)]) measures K
the occupancy of the origin at time momentt equals zero  (¥y)={ 1]
if none of K walkers is present at the origin at the time k=1

N
im exp{ -8B nnz<sﬁk>>]>

|
B

momentn and equals 1 if one or several scavengers appear at K N

the origin at thenth step. In this regardy* ({S{}) is similar =]I { lim exp{ B2 nnI(sﬁk))}

to the earlier defined functional{({S{"}) appearing in the k=1 \ goee n=0

analysis of model I. An important difference, however, is < (4 N

that a simultaneous visit of the origin by several walkers is _ - . . K)
counted as a single visit, and consequenti§f,({S{’}) de- kﬂl (M %“ Esy Bllzlexp( ’Bz‘o M)
scribescollectivebehavior of allk walkers, which cannot be

factorized, as it appears in model I. This substantial distinc- (1 B

tion between the models involving ungated and gated targets (M %D: Prob{7,Z(S,)=0

was noticed already by Szats al. in Ref. [12] (see, also

Ref. [13] for more details who stated that the crucial dif- K

ference between the case when the gates are imposBtson forany ne [O’N“SO}) , (54)
or on theA particle is that in the latter case the “switching of

the A from the reactive conformation to a nonreactive one is

felt simulateneously by all scavengers.” This means, in parynere Prol;,7(S,)=0 forany ne[ON]|S) is the prob-
ticular that, if we define the functional* ({S{’}) using the  apility that anN-step random walk, starting & and char-
directed” polymer representation in Fig. 4, then it would acterized by internal two-state variabjg, has never visited

count all sites on the axis visited simultaneously by two, the origin being in the reactive statg,=1. Next, turning to
three, etc., walkers as singly visited sites. In this regardihe infinite-space limit, we find

N*({SW}) determines the number afistinct visits to the
origin by K independent walkers.

We notice next that an upper bound on the integral effec- 1
tive reaction rateQ{'" for model Il can be found very (¥n)= _ME {1—Prol 7,7(S;,)=0
straightforwardly. To do this, it suffices merely to observe %0
that K
forany ne[O, N]|SO]})
K K
1_1(;1 I(i")))gkil (SY), (52 =exr{—c2 {1—Prolf 7,Z(S,)=0

- = S
and hence, that* ({St)<AM({S¥}). This implies, in turn, forany ne[o, N]|SO]}}. (55)
that the survival probability?y for model Il is greater than

the survival probability obtained for model |, and the integral

effective reaction rat@{|" obeys .
Evidently,

Qy=al, (53
1—-Prol 7,Z(S,)=0 forany ne[0, N]|S]

which inequality sets a rigorous upper bound(@ﬁ') . Note N
that the inequality in Eq(53) was established earlier using :prot< > 9 I(S)=1
different type of arguments in RefL5]. n=0

It may be worthy to remark that the inequality in E§2)
holds as an equality when & are different at a given,
which happens when the scavengers do obey a hard-covéhere PropS)_,7,7(S,)=1|S] is the probability that an
exclusion and no two scavengers can simultaneously occugy-step random walk starting at sif has at least once vis-
the same lattice site. Given that the scavegers are indistirted the origin being in the reactive state.
guishable, we may thus expect that for model Il with hard- Note that ProbE,’LonnI(Sh)BHSO] is not constrained in
core scavengers, th& particle survival probability will be the sense that it provides no information at which of the
determined exactly by Eqg$39)—(45) at sufficiently large visits to the origin precisely the reactive state has appeared;
times. that is, the particle could visit the origin many times until it

We next proceed to calculate the upper bound on the surrived eventually at the reactive state. Keeping this in mind,
vival probability for model 1l, which requires a slightly more we now realize how the sum in the exponent in the last line
complicated analysis. To do this, we return to the indicatoof Eq. (55) can be bounded from below, which will result in
function of the reaction event in E¢47) and perform a first  the desired upper bound on the target survival probability in
averaging with respect to the trajectories and the initial pomodel Il. To do this, we will proceed as follows: Suppose
sitions of the scavengers. The steps involved in the averaginfiyst that the starting point of the trajectofs,} is not the
procedure in this case are as follows: origin. Then we notice that, fog,# 0, one has

50) . (56)
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N Further on, following the Dvoretzky-Erdo Lemma,
Prot( 2 72(Sy)=1 SO) EofA({S.})} is a monotonic decreasing sequence of time
n=0 (see, e.g., Ref25)), i.e.,
S Prob( TS L= EfA (S EA(SHI= - =Eofd((S )=
"o =EffA{Suh}, (61)
n-1
-1 and IZO 7I|I(S|)=0‘So>, such that
(57) lim . .Eo{A({SiH)}= (62)

P(0[0;17)’
where Propz,Z(S,)=1 and 2{1;01 7Z(S)=0|S] stands e can majorize the terms in the curly brackets on the right-
for the probability that the origin has been visited for the first, 50 side of Eq(60) by replacingEo{A({S,})} by its mini-

time exactly at theath step(has not been visited prior to the 1,4 valueEo{A({Sy})}. Enhancing in such a way the bound
nth step, and the particle at this very step was in the reactive, gq. (60), we have that

state, i.e., such thag,=1. Hence the right-hand side of Eq.

(57) is the constrained probability that within &hstep walk N
starting at the sit&,# 0 the particle happened to be in the Pns HO [(1—-p)exd —cE{A({S\}H}]+p]
reactive state at its first visit to the origin. Summing next "
both sides of the inequality in Eq57) over all starting =[(1—p)exd —cE{A({S\H}H+pN*?
points, we obtain
=exp{—(N+1)In[1/((1-p)
N
X exd —cEp{A + 63
s Prob( S 7S)=1 SO) H— CEofA({SHN+p)]} (
o n=0 and hence, the integral effective rate constant obeys
N
N+1
= > Prot( > 7 (S)=1 So) Qg”;( )In[l/((l—p)ex;{—cEO{A({S\,})}]+p)].
S0, 5#0 n=0 c
N (64)
= > Z For d-dimesnional Polya walks, in particular, from E&4)

50570 n=0 we find the following explicit lower bounds on the integral

effective rate constant in the model II:

n—-1
XProb( 7I(S)=1 and |Zo nI(S)=0 So)

2N 1/2
d=1, QFJ')B(l—p)(7) [1+O(1WN)],

™

N N
= 2 D mFa0[S)=2 7 2 Fa0|S) CN
“0 n=0 n=0  $5,5#0 In(N)[1+O(1/In(N))], (65)

S0-So

d=2, Qy’=(1-p)

N
=> nné Fn<so|0>=n§0 mEfA({SH},  (58)

- N
n=0 d>2, Qy zgln[ll((l—p)
whereA({S,}) is an auxiliary random variable, defined to be X exd —c/P(0[0;17)]+p)]
the number obirgin sites visited on thath step by a given
particle trajectory{S,} [25], ><[1+O(1/\/N)],

which hold in the limitN— oo,
On comparing the results in Eq&3) and(65), we notice
. ] that both lower and upper bounds display the s&htepen-
Consequently, we can bound the right-hand side of(B8.  dence, but differ slightly in numerical factors. This means, in
as turn, that theN dependence of the integral effective reaction
rate Q") is determined here exactly by Eq&3) and (65).
N Consequently, at sufficiently large times the decay laws in
PN$9XF{ —cX mEfA{SH} the models | and Il of gated target annihilation are essentially
n=0 the samgup to a possible difference in characteristic decay
N times, and coincide with the decay law predicted for the
=11 exd —cn.Eo{A({SH)}] ungated model of Sec. IL.
n=0 Note also that the time evolution of tiieparticle survival

A{SH =85S}~ S{S-1D). (59

probability for the model Il defined in a one-dimensional

N
=11 {(1—p)exd —cE{A({S,)H+p}.  (60) continuum was considered earlier in Rgt3]. Within the
n=0 framework of the heuristic Smoluchowski-type approach, it



3400 O. BiENICHOU, M. MOREAU, AND G. OSHANIN PRE 61

was predicted _that tht_—} Iong—time deca}yl'qﬁ should follow (1—p) lim exd — BZ(r,— )]+ p=exd — apZ(r,— 9],
the decay law in the first line in E@8), i.e., should proceed B

at long times exactly in the same fashion as that for the (69)
model | and, consequently, should be essentially the same as . . .
in the ungated target problem. While intuitively such a be-"€ have that the |nd|c§1t9r f“”C“O"! of the reaction eve_nt,
havior seems to be quite plausible for low-dimensional sysgver{;\ged over the reactivity fluctuations, takes the following
tems[see the discussion following the Collins-Kimball result """

in Eq. (36)] and, as a matter of fact, agrees with our predic- N K

tion in Eqg. (53), one still cannot, in principle, rule out the ‘I7N=exp{—ap2 > I(r,— M| (70)
possibility that the integral effective reaction rates for mod- n=0 k=1

els | and Il may have different numerical factors even in low _

dimensions. The point is that the Smoluchowski approach ifNote that the averaged indicator functidf is now an ex-
Ref. [13], which is a continuous-space counterpart of theponential of the factow, times the number of times a given
Rosenstock approximation, here allows one to determingandom walk trajectory starting at=0 at the origin visits a
only a lower bound on the target survival probability andgiven array of lattice site§S*}, i.e., can be thought of as

thus cannot produce exact numerical factors. the moment generating function of the “residence time” of a
single random walker on a given arr§§¥}. From a differ-

V. MODEL IlI: AN UNGATED. MOBILE A PARTICLE ent perspectivel can be viewed as the partition function

AND IMMOBILE RANl’DOMLY PLACED of a phantom polymer chain on a lattice with randomly
STOCHASTICALLY GATED TRAPS B placed energetic barriers of finite height: the linait— o

(p—0), then corresponding to the case of randomly placed,
We turn next to the case of stochastically gated trappingmpenetrable obstaclg&8].
reactions, focusing first on the situation involving an ungated Now the double average over the trajectories of fe
A particle, which performs a discrete-time, homogeneougparticle and over the positions of the traps can be written
random walk on ad-dimensional lattice starting from the down as follows:
origin at n=0, in the presence of immobile, randomly < \
laced, stochastically gat®Iparticles. The properties of the —
Sates are the same )zlisg defir?ed in model I.p P Pn=(¥n)= EO[ < kUl exr{ —ap I(rn_s(k))} >J

; Do . . =0
For this model, the indicator function of the reaction event 3

can be written down K N
N eff(od o]
k= n=0
V= lim exr{—ﬁE >, Z(ry—SY) n
B n=0 k=1 N K
Vo =E0[< ES ex;{—apngo I(rn—S)D ]
=1 II limexd—pZ(r,—S¥) 5 7, (66) (71

n=0 k=1 B—oo

Turning next to the infinite-space limit, i.e., letting,K
where S® are d-dimensional lattice vectors denoting posi- — o, while keeping their ratio fixed, we have that
tions ofK trapsB, while r, defines the lattice position of the

[y

2|

. N K
A particle at thenth step. 1
Averaging first over the reactivity of the traps, we readily Pn=Eo) |1~ M ES 1—-exp - O‘pnzo Lrn=9)
find
- N K = Eo[ex;{ - CE M{S}({rN})} ], (72
Wy=I1 T lim exd - BZ(r,— %) 7] )
n=0 k=1 g_,o

where Mg ({ry}) is defined by

N K
- —p) i - 0 N
11 1 p) im exif - A(r, $%9)]+p}. M{S}(rn):(l_exp{_apzo o ) -
(€7 o .
Note that Mg ({rn}) is quite similar to the functional de-
Further on, noticing that fined in Eq.(28), with the only minor difference being that
the latter is associated with the multiple visits to some given
(1—p) limexd — BZ(r,— S¥)]+p site S; that is, Mg({rn})=1—p’ if the site S is visited
B—e exactlyj times by anN-step walk starting at the sitgy=0.
b, r,—s® Conseq_uently, .the sumsA{l{S}({rN})_ prqbes the occupancy
_ (68) of Fhe sites V|S|t§d by a given realization of a random walk
1, r,#SW, trajectory(see Fig. 5.

However, an important difference with the previously
and hence, rewriting this expression as considered model, which makes the computatiorPgffor
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VU({ry}) are not independent; this can be readily seen if
one notices that the combinatiai{L,j V¥ ({ry}) is a non-
fluctuating quantity and equals the total number of sites vis-
— - ited by anN-step walk, i.e.N. Lastly, the random function
. S({rn}) in Eq. (75) denotes, as previously defined, the num-
g O | ber of distinct sites visited by arN-step random walk tra-
‘ ®

®

[ jectory{rN},S({rN})=EJ-N:1V(D({fN})-

Consequently, we find that E¢r4) attains the following

|| %
H = (|) OEO ol form:
O B % D{) Q
| s D<> B 3 i)
o = OO0 O gy B Pn=ex _CEo{S({rN})}+CE EdVV({ruhlp' |-
B OO OO (76)
| q éP Ch The averaging in the exponent in E§6) can be performed
] directly using the results obtained in RE25] for the gener-

ating function of the expectatioE{VW({ry})}. On the
FIG. 5. A realization of thé\= 130 step random walk trajectory Other hand, it is evident that for homogeneous random walks
{rn} on a two-dimensional square lattice. The sites visited two
times are marked by circles, the sites visited three times by squares,
and the sites visited four times by diamonds. For this particular
realization= sM;g({rn}) is a fourth-order polynomial with respect
to the gatlng prObabl“tw of the form 2sMg({rn})=113-69  which implies, in turn, that in terms of the Rosenstock ap-
—28p*—12p°—4p*. The coefficients in this polynomial are ran- proximation the integral effective reaction rate for model Iil,
dom, correlated variables dependent on the particular realization Qb(lll) has exactly the same form as that obtained for model
trajectory{ry}. I. As a matter of fact, this does not seem to be surprising
since the mean-field-type Rosenstock approximation is not
sensitive to the fact which of the reactive species precisely is
mobile and which is fixeflsee Eqs(74) and(77)]. However,

EO{ZS M{S}GrN})jEZ Er M} (77)

model 1ll to be a fairly complex problem, is that here
we have to deal with a moment-generating function of

Mig(irn}), compared to a much easier problem of 5 notound difference between these two models does exist
computation of an expected value 8fli5,({ry}), €ncoun- ;o4 helow we will show that the large-decay ofPy, pro-

tered in the model I. Below we consider first predictions ..aqs siower than it is predicted by E€R9), (42), and(45).
based on some approximate approach—the Rosenstock

approximation—and next derive rigorous lower and upper

bounds, which both have the same dependence on thé\time B. Large-N decay of the survival probability

but differ in the prefactors. First of all, we note that in virtue of Eq75) and of an
evident observation that for any given random walk trajec-
A. Rosenstock approximation. Decay pattern tory {ry} all V({ry}) are non-negative, one finds that

at intermediate times N

. , Mig({rn)=S{rnh), (78)
We start our analysis of thd dependence of the survival
probability in Eq.(72) by first considering the predictions of which implies that, quite triviallyPy is bounded from below
the Rosenstock approximation. Applying the Jensen inequaby
ity, we may boundPy in Eq. (72) as follows:

=Eolexd —cS{ryh) 11 (79

Py= ex;{ —CEo( ES: M{S}({r,\,})] } (74 On the other hand, for any<1 and anyj >0, the difference
1-p'=1-p. Consequently, the survival probability is al-

To proceed further, we note that the sigM g ({ry}) can ~ WaYS bounded from above by

be written down formally(see Fig. % as a polynomial with
random coefficients, Pn<Eo{exd —c(1-p)S{rnh 1} (80)

N e., largeN decay ofPy in model Ill proceeds slower than
2 Mg ({rh) = E VO{ryh(1—ph the decay i_n the ungated trapping probl@eq. ID_, with t_he
S =1 concentration of traps equal to(1—p). This inequality,
N however, does not seem to be trivial at first glance, since for
_ _ 0 j model Ill the factorc(1—p) represents only the average
=S{r r , 75 . . .
Srwb) 12 vidrhp 79 value of the active traps concentration, which does fluctuate
. in time and may exceed(1—p) at certain time moments.
where eachtV({ry}), j=1,... N, is a random variable, Finally, taking advantage of the analysis in Rg0], we
which equals the number of sites in a givirstep random infer from two latter inequalities that the integral effective
walk trajectory {ry} visited exactlyj times. Note that reaction rate for the model Ill obeys the two-sided inequality
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N d/(d+2) N\ d/(d+2) lution of the function in Eq(85), averaged over the reactiv-

ad(l_p)Z/(d+2)(E) $Q(n:”)$ad = ity fluctuations and trajectoriefry}, first using the Rosen-
(81) stock approximation and then evaluating rigorous lower and
upper bounds.

Note now that both lower and upper bounds show the same
dependence oN (but have slightly different prefactors A. Rosenstock approximation. An intermediate time decay
which insures that in the largd-limit the integral effective
reaction rateQ{!"") grows in proportion taN¥(4*2) and con-
sequently, the decay of the survival probability for model 111
is described by the dependenceRg(~—NY*2 je. the
sameN dependence as in the ungated cigz®30.

Now consider the prediction of the Rosenstock-type ap-
proximation for theA particle survival probability in model
IV. Applying the Jensen inequality, we have that the particle
survival probability in model 1V is bounded by

Pn=exl — cEo{S({rn}{ 7 =11} (87)
VI. MODEL IV: A MOBILE, GATED A PARTICLE
AND RANDOMLY PLACED FIXED TRAPS The average oS({ry}|{ 7,=1}) over the reactivity fluctua-
tions can be performed straightforwardly. First of all, we
rewrite Eq.(86) as

Consider, finally, a trapping model involving &particle
bearing astochasticgate and performing a lattice random
walk in the presence of randomly placed, immobile ungated N
traps. For such a model the indicator function of the reaction S({rN}I{nn=1})=2 { ( E nZ(r,— ”
event can be written as S =

N K 1 (2n N
= | - — sk = 1——J dz
e Ime <53, nZ, 10,5, 02 = |z, 2k
which equals unity if arN-step trajectory{ry} does not visit xexdiZnI(r-—S 88
any site from a given arrayS™} in the reactive state, and HiZ o I(Tn=S) |- (&8

turns to zero if any of ,, N=0,1, . .. N, coincides with any
s when 7,=1. Next, averaging the latter equation with respect to the distri-

We turn first to averaging the indicator function of the bution of the variableg#,}, we have that
reaction evenfEq. (82)] over the traps’ placement on the
lattice. First rewriting¥ in Eq. (82) in the factorized form

K

N
‘IINZH lim ex[{_ﬁz WnI(rn_S(k)) )
k=1 g oo A=0

- 1 T
SArHm=1h=3 (1— Zfoz dz(p
(83

N
+(1-pexdiz]} ﬂfn‘S))
and noticing that since all traps are placed independently of
each other, all multipliers in Eq83) appear to be statisti-
cally independent, we have that the indicator function aver- = Mg{ra}), (89
aged over the traps’ placement reads S

N K where the functionalMg({ry}) was defined previously in
v = lim ex Z(r Eq. (73.
(Vdist0y= 2 B0 F{ '32 el )D On comparing the result in E¢89) with Egs. (74) and

(84)  (77), we notice that within the Rosenstock approximation the

integral effective rate constant for model IV appears to be

where the brackets with the subscrifg} stand for the  exactly the same as the one previously found for model Iii
averaging with respect to the positions of the traps. Nextand coincides, as well, with the result obtained for the inte-
turning to the infinite-space limit, we find thé¥y);sw, i gral effective rate constant in model I. Hence this approxi-

given explicitly by mation predicts that the decay of the survival probability in
B B model Il proceeds exactly in the same fashion as the decay
(Wn)stoy=expl—cSHrnt{ =11} (85 |aws obtained for models I and Ill. In other words, the

Rosenstock approximation appears to be completely insensi-
tive to the fact of precisely which of the reactive species is
mobile, and precisely which of them is stochastically gated.

where the functional

1-7

N
5({Ir|\1}|{77n=1})=2S nzo nnI(rn—S)” (86)

B. Large-N decay of the survival probability

determines the number dafistinct sites visited in thep, We start with the derivation of a rigorous lower bound on
=1 state by a giverN-step trajectory{ry}, or, in other the A particle survival probability. Here an averaging of the
words, the number of distinct sites visited by tAgarticle  indicator function of the reaction event in E®2) with re-
being in the reactive state within a given realization of itsspect to the reactive state of the mobheparticle can be
N-step random walk. Below we will study the temporal evo-performed as follows:
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N K e.g., when the traps obey a hard-core exclusion. Conse-
W= lim ex;{ -8B 7>, I(rn—S(k))} quently, in virtue of the inequality in Eq95), we have that
B—o0 n=0 k=1
N K
= lim exp — Z(r,— S —
nEIO P p[ B””g‘l (T ) V= ex —apEO kZl I(ra—S")], (96)
n= =
K
= 1-p) lim exp — Z(r,—SW) |+pt.
nl:[o [( p)lgﬂx F{ '8k§=:1 (T Jj*p where the right-hand side, as one can readily see, is exactly
the indicator function of the reaction event for model |,
(90 averaged over the reactivity fluctuations. This implies the
o inequality
Next, noticing that
. K K d/(d+2)
(1-p) lim ex —B2, Tr,=8¥) | +p QUV=QfM=aq| < , 97)
K
_ 1, kzl I(r,—S¥)=0 91) which signifies, in particular, that similarly to the relation
N _ between twaQy’'s, describing survival of gated and ungated
p, otherwise, targets(models Il and ), the integral effective reaction rate
for the model involving a mobilgated Apatrticle in the
and hence, that presence of immobile ungated traps is generally less than or

equal to the corresponding rate for the model, with the
K ungated Aparticle performing random walk in presence of
(1—p) lim exr{ —B> T(r,— S [ +p gated traps.
B0 k=1 We finally proceed to the derivation of a rigorous upper
K bound on theA particle survival probability in model IV. To
_ K do this, let us turn back to the functions{{ry}|{ »,=1}) in
—exp{ % 1_[( .Z’l Lrp=$ ))) } ] (92 Eq.(86), and recall that it determines the numbeda$tinct
sites visited by a particle appearing in theactive state
we find that the averaged indicator function of the reactionW'th'n Its _N-step random V\.’a”{rN}' I\_Iote_ that similarly to
event obeys the situation encountered in th_e derlvatlo_n _of the analogous
bound in model II, here there is no restriction as to at pre-
_ cisely which visit the particle appears in the reactive state;
Vy=exd — apNswy({rah) ], (93)  that is, each sit& can be visited many times by an inactive
particle until it eventually reappears at this site in the reac-
where tive state, which event contributes to the overall value of the
functional S({rn}|{ 7,=1}). Hence, to find a lower bound
K on S({rn}H{mn=1}) in Eqg. (86) we will pursue the strategy
1-1( > I(rn—gk)))} (94)  employed already in Sec. IV, i.e., we will try to restrict the
k=1 order of the reactive visit to sit8. Here, however, this ap-
pears to be a slightly more delicate problem, since we have
is the “residence time” of a givemN-step random walk tra- to deal with the realization-dependent functional in B8§),
jectory on the subset of “distinct,” i.e., noncoinciding sites rather than with its expected value.
from the sefSM}, k=1, ... K. This means thatif any two  To find a lower bound oS({ry}|{7,=1}), we thus pro-
(three, etq. sites from{S™} coincide, i.e., the traps overlap, ceed as follows: First, we constrain the summation in Eq.
a visit of {ry} to such a multiply covered site singly contrib- (86), supposing that it runs not over all sites of ifinite
utes toN;swy({ry}). A rigorous lower bound oy follows  latice, but only over soméinite subse{S"}. Clearly, since
then from an evident inequality, the functionall 1-Z(Z,_,7,Z(r,— )] is positive definite,
such an operation will result in a lower bound on

N

Nisoy({rn}) = 20

n=

N K S{rnH{mn=1}). Next we define the subsgs* }; we stipu-
> 1—1( > I(rn—S(k))Hs S r,— sy, late that for a given realization of a particle’s trajectory, the
n=0 k=1 n=0 k=1 subset{S*} is just a collection of such lattice siteS on

(95  which the particle appeared for the first time in the reactive
state, i.e., sites which remained “virgin” until the first visit
where the right-hand side determines the unconstrainemh the ,=1 state.
“residence time” of the samél-step random walk trajectory More formally, a derivation of such a lower bound on
on the set of all sites froiS¥}. Clearly, the inequality in  S({ry}/{7,=1}) can be based on the evident inequality be-
Eq. (95) becomes an equality if all sitdsS®} are distinct, tween the following two indicator functions:
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N
(Wnhsoy= T exd —cmmA({rah)]

N
Is({rnt{mn= 1})2{1—1( nz,o 7L(rh—9)

N
=ad{rl{7,=1) =11, et —cmadlrab)]
N n—-1 N
-2, ”“H 2 I“"S)) =TI {(1-p)exd ~cA({rh)] +p}. (102
n
—I( E (r — S)) ] , (98 Recollecting next that the realization-dependent property
1=0 A({r,}) assumes only two values1 or 0, and hence, that
where the indicator function on the left-hand side of F) (1-p)exd —cA({r,})]+p
equals 1 ifS has been visited at least once by the particle in {(1-p)exd —cl+p}, A{r.hH=1
the reactive state within a given realizatifm} of its N-step = A B
walk, and equals 0 otherwise. Meanwhil&g({rn}{7n L A@rap)=0,
=1}) equals 1 if, within anN-step walk, the particle ap- (103

peared for the first time on sit8 in the reactive state, not

having visited this site before; otherwise it is equal to 0. we may rewrite quite formally the bound in E(.02) as
Summing both sides of the inequality in E§8) over all

lattice sitesS, we have, consequently, that N
(Wnhsop= 11 {(1-pexit —cA({rah)]+p}
S({rN}|{77n: 1})

1 N

=3 Ttraaln=1) zex”["”(u—mexd—cwp 2 A({r"})}'

’ (104

N n—-1 n

ZES nZO ”“{I< Eo I(r,—S)) _I(lzo I(n—S))] Finally, noting that=h_ oA ({r,})=S({r\}), we find that the

N ] A particle survival probability obeys
ZHZO ﬂnzs: Hl_I(I—EO I(n—S)H PN:EO{W{S(H}}

n—-1 1
—|1-1 |20 Z(I’|—S))H, (99) $E0[exr{_ln((1_p)exq_c]+p)8({rN}) ]1

(105

which yields, by virtue of the definition in E¢59), a desired

lower bound of the form and hence, by taking the lower bound in Ef7) into ac-

count, we arrive at the following two-sided inequality for the
integral effective rate constant in model IV:

N
2/(d+2
5({TN}|{77n:1})>Z 7A{rn}), (100 aq In 1 @ )Nd/(d+2)
n=o cl |(1-pexd—cl+p
=Qy
where the right-hand side of ELO0O determines the num- Wdio
ber of “virgin” sites visited by anN-step random walk in the N d/(d+2)

reactive state. Equatiofi00) implies, in turn, that the func- =&y C

tion (Wy);swy in EQ. (85) is bounded from above by

(106

Note that again, both sides of the inequality in E06)
N show the same dependence on the tihand consequently,
exactly determine th&l dependence of the integral effective
<\PN>{S(k)}SnHO exil =~ A {rnh)]. 10D e cgnstant in model IVp. We also remark thgt in the limit
c<1 one has that [1/((1—p)exd —c]+p)]=(1—p)c, and,
hence, in this limit the lower bound on the integral effective
Now, averaging both sides of the latter equation over theeaction rate for model IEq. (106)], coincides with the
fluctuations of the reactivity, we find lower bound omQ{'" in Eq. (81).
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C. Conclusion bounds showing the same dependence on the Nresut

To conclude, we have studied the time evolution of gne Naving slightly different prefactors. We have demonstated
particle survival probability in four models of stochastically that the decay of thé particle survival probability in this
gated, diffusion-limited pseudo-first-order reactions of themodel is characterized by essentially the same time depen-
form A+B—B. We have considered two different models dence as that for model |, i.e., the integral effective reaction
of targetlike annihilation reactions, where the first one contate follows the behavior of the expected number of distinct
cerns the survival of a single, immobikeparticle(the target  sites visited by am-step random walk, but may have a dif-
in the presence of randomly moving gated scavendgers ferent numerical factor.

(model ), and the second focuses on the fate of a gated Next, for models Ill and IV, we have presented some
immobile A particle in the presence of randomly moving approximate results, based on the so-called Rosenstock ap-
ungated scavenget® (model Il). Two other examples of proximation, which may provide a plausible description of
stochastically gated pseudo-first-order reactions are furthe kinetic behavior at intermediate times, as well as exact
nished here by trapping reactions between a mobile, ungate@sults concerning the long-time evolution of tAeparticle

A particle and a concentration of randomly placed, immobile gyrvival probability. We have demonstrated that within the
gated trapsB (model Ill); and the reverse situation with a Rosenstock approach no difference exists between the ki-
mobile gatedA particle and randomly placed, immobile, un- petic behavior in models 1l and IV. Moreover, we have
gated trap® (model IV). In all the models studied we have ghown that the decay forms coincide with the exact result
supposed that mol_ol_le species perform symmetric lattice raSptained for model I. The long-time evolution of the decay
dom walks. In addition, we have adopted the two-state POIS‘t’unctions in models 1l and IV has been determined in the

son gating model of Ref14], in which each of the gates is f%rm of rigorous lower and upper bounds characterized by

supposed to be in either an active state on a blocked one, and, ome dependence on the tiNieWe have also realized
to update its state at each tick of the clock at random, inde-

pendently of the previous history as well as of the gate hat in the case of stochastically gated trapping reactions the
imposed on other particles ong-time decay of theA particle survival probability has

We have demonstrated that model | allows for an exacEssentially the same form as that describing the kinetic be-
solution, and derived explicit asymptotic decay forms forhavior of their ungated counterpaitSec. I); however, the
lattices of different spatial dimensionalities. Curiously characteristic times mlght be reno_r_mallzed to include the de-
enough, it appeared that for low-dimensional lattices ( Pendence on the reaction probability.
<?2), for which lattice random walks are recurrent, the long- AS an interesting by-product of our analysis, we have also
time behavior is independent of the presence of stochastighown that the survival probability in all four models under
gates(as soon as the gating probabilipy<1) and proceeds Study can be interpreted as a moment generating function of
exactly in the same fashion as for reactions with well-some refined characteristics of random walk trajectories. In
defined, nonfluctuating reaction ratéSec. I). Correction particular, we have demonstrated that for model | the sur-
terms do, however, depend on the gating probabpignd  vival probability is the moment generating function for the
may be important for reactions in which the species arenumber of visits rendered by a concentration of independent
blocked most of the time. Next, we have found that forrandom walkers to the origin. In other models this survival
model | in higher dimensions the decay is described by grobability appears as the moment generating function of the
purely exponential function of time with a characteristic time number of self-intersections of random walk trajectories, the
dependent on both the gating probability and on the probabilresidence time on a disordered array of marked sites, the
ity of the eventual return to the origin. A physical explana-number of sites visited exactly a given number of times, and
tion of the predicted behavior has also been provided. so on. Consequently, our results also apply to the asymptoti-

Further on, for model Il the decay pattern has been detercal behavior of the above mentioned generating functions,
mined exactly in the form of rigorous lower and upper which in many cases is not known yet.
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